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Chapter 1

Fundamental Concepts

1.1 Commutation Relations
Prove

[AB,CD] = —AC{D, B} + A{C, B}D — C{D, A}B + {C, A} DB

I think it’s easier if we start with the right hand side. Expanding out the anti-commutation
relations,

—AC(DB+ BD)+ A(CB+ BC)D —C(DA+ AD)B+ (CA+ AC)DB
Distributing and grouping terms,

= ABCD — CDAB = [AB,CD)]
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1.2 Pauli Matrices
Suppose a 2x2 matrix X (not necessarily Hermitian, nor unitary) is written as
X=ay+7- a

where qp and a; 2 3 are numbers.

1.2.1 'Trace
How are ag and a; (k =1,2,3) related to tr(X) and tr(oxX)?

We can write tr(X),
tr(X) =tr(apl) + tr(d - @)

We know that by definition, the Pauli matrices are traceless, so re-scaling them by a scalar
factor does nothing to the trace.

= 2ap + 0 = 2ay
If we multiply X by one of the Pauli matrices,
o X = agok + a10,01 + as009 + 30103

We know that when we take the trace, the first term will always die since that is just one of the
Pauli matrices. We also know that non-k terms also die since

0q0p = 5abI + ZEal)co—c
which for a # b, returns another Pauli matrix. Thus, only the k term survives,
tr(opX) = 2ay

From these, we can show,

tr(X
ag = (2)

tr(opX
ap = 7"(21@ )

1.2.2 Matrix Elements

Obtain a¢ and a;, in terms of the matrix elements X;;.




1.2. PAULI MATRICES

As a reminder,

X — ag+as ap —tas
~ \ai +ias ag—as
We now want to multiply each Pauli matrix by X, i.e., 0 X,

Xo1 X2
X =
7 (Xn X2

oox = (X2 —iXo
227 Xy iXge

X11 Xi2
03X =
’ (—X21 X2z
Using the results from the previous part,

1

ag = §(X11 + Xo9)
1

ay = §(X21 + X12)

1, .
ag = 5(72X21 —+ ZX12)

1
ag = §(X11 — X22)
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1.3 Invariant Determinant

Show that the determinant of a 2 x 2 matrix ¢ - @ is invariant under

o oa = o 7N\ L —id - N
0-d—0-d =exp 5 G-aexp| —p—

Find qj, in terms of a; when 7 is in the positive z-direction and interpret your result.

Let’s go ahead and take the determinant of both sides. What really matters is the right side,
so let’s look at that one. We know we can break up the determinant,

= det (exp (ZE ;@)) det(d - @) det (exp <—25’2ﬁ¢>)

Each determinant is just a scalar, so we can rearrange them for free,

= det (exp (i& 2ﬁ¢)> det <exp <%;2ﬁ¢>) det(7 - @)
= det (exp (i& 2ﬁ¢) exp <_Zé’2ﬁ¢>> det(d - @)

= det(d - @)

For the second part,
n=2=(0,0,1)
Substituting this in and writing out explicitly,

- = (Zaz¢> > - <_25z¢>
g -a = exp B) g - aexp 5

i 0 —ip 0
exp 5 as ay — ’iag P 2
0 exp ;w aj + a9 —as 0 exp @
2 2
_ az (a1 — iaz) exp(i)
(a1 +iaz) exp(—i¢) —as
Using the results from question 2,
tr(X
apg = (2 )
t X
ap = r(oxX)



1.3. INVARIANT DETERMINANT

where X =qg+ 7 - d.

al = %[(al +ias) exp(—id) + (a1 — iaz) exp(id)] = a1 cos(@) + az sin(¢)

ay = %[—i(al + ias) exp(—id) + i(a; — iag) exp(ig)] = —aq sin(¢) + as cos(d)

which we recognize as rotation about the z-axis.
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1.4 Bra-Ket Algebra

Using the rules of bra-ket algebra, prove or evaluate the following:

1.4.1 tr(XY)=tr(YX), where X and Y are operators

We can rearrange the trace,

tr(XY) =tr(X)tr(Y) =tr(Y)tr(X) = tr(YX)

1.4.2 (XY)! =YTX', where X and Y are operators

Let’s act XY on some ket, |a),

(XY)|a)
In bra-space,

{af (XY)T
Alternatively,

XY Ja) = X(Y |a))

In bra-space,

(a| YTXT
Comparing these two cases,

(XY =yTxft

1.4.3 explif(A)] =? in ket-bra form, where A is a Hermitian operator
whose eigenvalues are known

Let’s act the function on a vector,

exp(if(A)) o) = [cos(f(A)) +isin(f(A))]|a)

Since we know the eigenvalues,

= [cos(f(a)) + isin(f(a))] )
exp(if(A)) = cos(f(A)) +isin(f(A))



1.4. BRA-KET ALGEBRA

1.4.4 > 5 (2)Ye(Z"), where ¢, (2') = (Z|d’)

11

Writing it out,

> (7Y (@ a’) = Gz a0

a’
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1.5 Matrix Representation

1.5.1 General

Consider two kets |o) and |5). Suppose (¢'|a), (a’|a), ... and (d'|B), (a’|B), ... are
all known, where |da’), |¢”), ... form a complete set of base kets. Find the matrix

representation of the operator |a) (3| in that basis.

From the text,

(a'la) (a'|B)"  (d|a) (a”]|B)"
o) (8] = | (") (@]B)" {a”|a) (a"]B)"

.1
1.5.2 Spln-§ systems

1
We now consider a spin B system and let |o) and |38) be |s, =#//2) and |s, = h/2),
respectively. Write down explicitly the square matrix that corresponds to |«) (5] in the
usual (s, diagonal) basis.

We expect to get a 2x2 matrix,

|82 = 1/2) (s = 1/2 = |+) —=((+] + (=)
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1.6 Adding Eigenkets

Suppose [i) and |j) are eigenkets of some Hermitian operator A. Under what condition
can we conclude that |i) + |j) is also an eigenket of A? Justify your answer.

If we act A on our eigenkets,

Ali) = ali)
{A ) =a'1j)
If |¢) + |7) is to be an eigenket,
A([7) +17)) = a” (|3) + 17))
Alternatively, we can write this as
A(li) +15)) = Ali) + Alj) = ali) +a'|5)

Comparing these results, this can only be true if either |¢) = |j) (the less interesting result), or
a = d/, i.e., the eigenvalues are degenerate.
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1.7 Ket Space

Consider a ket space spanned by the eigenkets {|a)} of a Hermitian operator A. There
is no degeneracy

1.7.1 Null Operator
Prove that

H(A —a)

a’

is the null operator.

Let’s act A on some unsuspecting eigenvector,

AT = d W)

A|P) —a |T) =0
A —a’ =0 for at least one case. Since we product over all a’, if A —a’ = 0 for one case, then

the product over all of those is 0.

1.7.2 Projection Operator
What is the significance of

If we act the given on |a'},

(A—a") o — (a’—a)a, )
1L =)= 11 Ga=am ) =1

Let’s act it on an eigenvector,

! 4l
a//#g{/ (a a )
We can insert identity and use the above relation,

_ H M|a/> (d'|¥) = |a’) (a’| W)

U///¢a/ (a/ - a//)

As the title suggests, this is the projection operator of |a).
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1.7.3 Example Spin

Ilustrate (a) and (b) using A set equal to S, of a spin-1/2 system.

As a reminder,

h
5 0
S, =
h
0 =3

h
The eigenvalues are w = ﬁ:§. Showing the null vector, we multiply,

(- (D)=l S 9=

Showing part b,
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1.8 Orthonormality

Using the orthonormality of |[+) and |—), prove

. h?
[Si, Sj] = deixhSk, {Si, S} = (2> dij

where

S = 2(4) (14 1) )

Sy = TR =1+ =) ()

8o = 2+ (4 =19 (-

Setting ¢ = z and j = y and brute forcing,

)
[z, Sy] = 528y = 5ySe = %[(IH (=D + (=) (+DI=+) (=) + (=) (+])]
—%[—(H) (=D + ([=) (+DIA+) (=D + (1) (+D)]

ih?

= HIH) D0 D+ () (=0 D = (=) ) (=D + (=) (=) ()
() () =D+ () (=12 D = (=) F (=D = (=) (=) (+])]

Using the orthonormality relationships,

{<+|+> = (-1 =1
(=) = (=) =0
ih® )
= 5 (1) (+) = (=) (=D] = ihS.
We do the same thing with the anti-commutation relation,
2
{Se, Sy} = 525y + 55, = %[(\H (=D + (=) FDI=(H) (=D + (=) (+D]
in?

= [F U D+ (=) DA+ (D) + (=) (D]
= %[—(IH (=) I+ A0 (=) D = (=) () (D A+ (=) (=) (D
(1) (=14) (=D = () {=1=) FD A+ (=) () (D A+ (=) (=) (D]

=0

We can repeat this for all other combinations to prove the desired relations.
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1.9 Rotation Operators

Construct |S - 7;+) such that

§~fz|§-ﬁ;+>=(z> S -1 +)

FB where n is characterized by the angles shown in the figure.
//(/—y' Express your answer as a linear combination of |+) and |-).
= o [Note: The answer is
Figure 1.1: Angles cos (g) |4+) + sin (g) exp(iar) |—)

But do not just verify that this answer satisfies the above eigen-
value equation. Rather, treat the problem as a straightforward eigenvalue problem.
Also do not use rotation operators, which we will introduce later in this book]

The first thing we do is figure out S. n,

7 = (cos(a) sin(3), sin(a) sin(B), cos(B))

Goh— g [(COS(Q)OSW) cos(a)osinw)) N ( sin<a())sm<5> _ism(%) sin(ﬁ)> N (cosw) 0

_h cos(8) sin(B)(cos(a) — isin(a))]
2

Lin(ﬁ)(cos(a) + isin(a)) cos(B)

h{ cos(5) sin(ﬁ)exp(—ia)]

2 |sin(B) exp(ic) cos(B)

If we now say that |§ -7;+) is some arbitrary vector, we can solve the eigenvalue problem,

S-n|S-n4) =
(i) ) G ) -(5)

x cos(B) + ysin(B) exp(—
x sin(B) exp(ia)) — y cos(B

w\m

|5 s +)
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Because our eigenket needs to be normalized, |x|? + |y|> = 1. Looking at the first line of the
matrix,

x cos(B) + ysin(f) exp(—ia) = x

(1 — cos(8))l|
sin(8)

Inserting this into the normalization condition,

ly| =

2| — 2|z cos(B) + |2|* cos*(B)
sin2(5)

|z + =1

Plugging this into the second line,

cos (5 ) (1= cos()
()

- o (£) xpto

which gives the solution provided by Sakurai.

y= exp(ic)
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1.10 Energy Eigenvalues
The Hamiltonian operator for a two-state system is given by
A = a(|1) (1] —12) (2 + [1) (2] + [2) (1])

where a is a number with the dimension of energy. Find the energy eigenvalues and
the corresponding energy eigenkets (as linear combinations of |1) and |2)).

Schrodinger’s equation,
Let’s say that we have some vector

W) = b|1) +c|2)

V) = ab|l) + ac|l) — ac|2) + ab|2)

ab+ac=FEb
—ac+ab= Ec
Setting a = 1 for simplicity,
b+c
=F
b
b—
¢c_pg
c

In this basis,

Solving the characteristic equation,

a— A a
det(€ — ) det{ a —a—)\}

=224
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Our eigenvalues are A = +1/2a. Solving for the eigenvectors,

Vo= o

Taking this solution, we compare to the bra-ket method, setting F = +1/2, b = 1 + /2, and
c =1 to see that our results are consistent.



1.11. HAMILTONIAN EIGENVALUE PROBLEM 21

1.11 Hamiltonian Eigenvalue Problem
A two-state system is characterized by the Hamiltonian
H = A1 1) (1] + A2 |2) 2| + H12[|1) (2] +[2) (1]

where 41, /2, and 5 are real numbers with the dimension of energy, and |1) and |2)
are eigenkets of some observable (# 7). Find the energy eigenkets and corresponding
energy eigenvalues. Make sure that your answer makes good sense for 7, = 0. (You
need not solve this problem from scratch. The following fact may be used without
proof:
= h .
(5 ) s +) = 5 I +)
with |7; +) given by

|7; +) = cos <§) |[+) + exp(icr) sin <§> |—)

where 8 and « are the polar and azimuthal angles, respectively, that characterize 7)

Like the previous problem, this can be solved in bra-ket notation, but I'm more comfortable
with matrices.

Sy s
%:
i

Solving the characteristic equation gives

(41 + H52) + \/(%1 + Hon)? — A( I A — H3)

A= 5
Ay = (1 + Haz) — \/(n%ﬂu + H2)? — A S Sy — IG3)
2
x
A f—
o) M
. H2
A+ (A1 — M) (Ao — M)
H1 — M1
Yy

T LA (S — ) (s — N)
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CHAPTER 1.

If %2 = 07

Our eigenvalues are \ = 411, 59,

FUNDAMENTAL CONCEPTS
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1.12 Spin-1/2 eigenvalue problem

A spin-1/2 system is known to be in an eigenstate of S . f with eigenvalue 7/2, where
n is a unit vector lying in the xz-plane that makes an angle v with the positive z-axis.

1.12.1 Measure S,
Suppose S, is measured. What is the probability of getting +5h/27

We write

The probability is given
h -
P(5) =118 m 2

2

; cos (g) (+]+) + sin <§) (=1-)

= %(1 + sin(7))

Since 8 = . Now we expect half the particles in the i/2 state if 7 is aligned in the x-axis and
all the particles in the /2 state if 71 is orthogonal to the x-axis, which we can show

1.12.2 Dispersion

Evaluate the dispersion in S,, that is

((Se = (S2))?)
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(For your own peace of mind check your answers for the special cases v = 0,7/2,and )

We need to calculate

Our arbitrary vector

|¥) = cos (%) |+) + sin (g) |—)
(S2) = (WIS, W) = 2 sin)

h2
2y

Combining these results,

(52— (820 = & eos?(7)
Checking,
v =0;AS8, = fi
V= g; AS, =0
y=mAS, = "
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1.13 Stern-Gerlach

A beam of spin 1/2-atoms goes through a series of Stern-Gerlach-type measurements
as follows

a. The first measurement accepts s, = /1/2 atoms and rejects s, = —h/2 atoms.

b. The second measurement accepts s, = h/2 atoms and rejects s, = —//2 atoms,
where s,, is the eigenvalue of the operator g-fl, with 7 making an angle 3 in the xz-plane
with respect to the z-axis.

c. The third measurement accepts s, = —/i/2 atoms and rejects s, = /2 atoms.
What is the intensity of the final s, = —//2 beam when the s, = /i/2 beam surviving the
first measurement is normalized to unity? How must we orient the second measuring
apparatus if we are to maximize the intensity of the final s, = —//2 beam?

Writing the first measurement in bra-ket notation, we only want the |+) state particles to
survive,

M = [+) (+]
For the second measurement,

M' = — s +) (fo; +|

[ +) = cos (fj) [+) + sin (g) =

For the third measurement, we only want the |—) particles to survive,

where

M" = |-) (-]

(2) (@)=
(@) ()

0 0

s (g) sin (f) 0
Mior = cos (g) sin (§> =) (+

The total will then be

1"t _00
MMM—[O J

which in bra-ket notation is
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Applying this to be a beam,

Mot (|+) + |—)) = cos <§> sin (g) |-)

The intensity is related tot he beam squared, so

I = cos? (g) sin? (g) = isinz(ﬁ)

which is maximized when § = /2, which gives an intensity of 1/4 the initial beam.
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1.14 Eigenvectors

A certain observable in quantum mechanics has a 3 x3 matrix representation as follows:

Sl

0 1 0
1 01
0 1 0

1.14.1 Eigenvalues

Find the normalized eigenvectors of this observable and the corresponding eigenvalues.
Is there any degeneracy?

Solving the characteristic equation,
det(Q — M) = —A\(\? — 1)

Giving the eigenvalues A = 0, 1. Solving for the eigenvectors,

1|1 1]t 1|1
_ ol: 11v== =1y = 2 | —
o= lo | m=g el =g |

There is no degeneracy

1.14.2 Spin-1 Particles

Give a physical example where all this is relevant

Looking this up, these are the eigenvalues and eigenvectors of hA for the spin-1 particle. I
believe this is further explained in chapter 3.
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1.15 Simultaneous Eigenkets

Let A and B be observables. Suppose the simultaneous eigenkets of A and B {|a/,V')}
form a complete orthonormal set of base kets. Can we always conclude that

[A,B] =0

If your answer is yes, prove the assertion. If your answer is no, give a counterexample.

We start by inserting identity on both sides,

[A,B] =" > [a" V") (a",1'|(AB — BA)|d" V') (a',V|

a/7b/ a//7b//
If we act the operators on our ket, we use the eigenvalue,

AB|d' V') = d'b |a', V)

[A, B] _ z z |a",b"> <a//’ b//| (a'bl _ b'a’) |a/’ b/> <a/’ b/‘

a’,b’ a’ b

We know that a’b’ — b’'a’ = 0 since these are not operators, so we can move them around for
free. [A, B] = 0 if the simultaneous eigenkets of A and B form a complete orthonormal set of base
kets.
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1.16 Simultaneous Eigenkets
Two Hermitian operators anti-commute:
{A,B} =AB+BA=0

Is it possible to have a simultaneous (that is, common) eigenket of A and B? Prove or
illustrate your assertion.

Let’s act some eigenket on our anti-commutator,

(a"|ABla’) + (a"|BA|a)

— a// <a/I‘B‘a/> _"_a/ <a//|B‘a/> — (a//+a/) <a”|B|a/>

Since (a” + a’) # 0, this implies that (a”'|Bla’) = 0 for both ¢’ = a' and a” # &, which implies
they do not have simultaneous eigenkets.
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1.17 Degenerate Eigenkets

Two observables A; and A;, which do not involve time explicitly, are known not to
commute,

[A1, A2] #0
yet we also know that A; and A; both commute with the Hamiltonian:
[A1, ] =0; [A2,]=0

Prove that the energy eigenstates are, in general, degenerate. Are there exceptions?
As an example, you may think of the central-force problem 7 = j52/2m + V(r), with
Al — Lza A2 — LL

We'll start by assuming the Hamiltonian has no degeneracy,
A |n) = Eln)

is unique since there is no degeneracy.
Using the fact that our operators commute with the Hamiltonian,

[Al,%] =0

A1%|n> —%Al |’I’L> =0

E(Ay|n)) = A (Ay |n))

Ar|n) = a1 |n)
Similarly, we can show
Ag|n) = as|n)
If we now act the commutator on our vector,
[A1, Ao]|n) = (ara2 — azaq) |n) =0
We know this cannot be true since
[A1, A2] # 0

Thus, energy eigenstates must be degenerate.
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1.18 Uncertainty

1.18.1 Schwarz Inequality
The simplest way to derive the Schwarz inequality goes as follows. First, observe
((af +A"(B]) - (o) + A B)) = 0

for any complex number \; then choose ) in such a way that the preceding inequality
reduces to the Schwarz inequality.

Reminder the Schwarz inequality,

(ala) (B]B) = | (alB) |

Let’s start with the suggestion, which expanded out,

= (ala) + A(alB) + A" (Bla) + A"A(B]B) > 0

Let’s set
_ (Bla)
(B18)
In this case, we’ll get
~ (Bla) (alB)  (alB) (Bla) | (alB) (Ble) (B]B)
o) = s (7 BT B

We multiply through by (3|5),
(ala) (8]8) = (Blev) (a]B) = 0

(ala) (BIB) > [ {alB) |2

1.18.2 Equality

Show that the equality sign in the generalized uncertainty relation holds if the state
in question satisfies

AAla) = AMAB|a)

with A purely imaginary.
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We know

(A4)*)((AB)?) = [(AAAB)?

(AAAB)? = TI([A, BYP + 1 [{{A, BY)P

We know that the dispersion,

AA=A—(A)
AB = B — (B)

Taking the generalized uncertainty relation, let’s take each term in [(AAAB)|? and try to figure
out what they are.

[A,B] = AB — BA
= (AA+(A))(AB+ (B)) — (AB+ (B))(AA+ (A))

[A, B] = [AA, AB]
Now looking at the dispersion,

([A, B)) = (| AAAB — ABAA|)

— M (al(AB)%a) — Aol (AB)%a)
Since A is purely imaginary,

— —2)(al(AB)%a) = ~2X(AB)?)
Similarly,

{A, B} = {AA,AB}

({AA,ABY) = A (al(AB)[a) + A(al(AB)|a) = 0

Therefore,

(AAAB)? = i « IN2((AB)2)?

= \((AB)?)?
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1.18.3 Gaussian Wave Packet

Explicit calculations using the usual rules of wave mechanics show that the wave func-
tion for a Gaussian wave packet given by

ipa’ (2 —(x))?
h 4d?

(2'|or) = (2md®) " exp

satisfies the minimum uncertainty relation

h
V(A2 V{(Ap)2) = 5
Prove that the requirement
(2'|Az|a) = (imaginary number) (z'|Ap|a)

is indeed satisfied for such a Gaussian wave packet, in agreement with (b)

Turning these into integrals,

(/| Az]a) = / (@'le") (2" |ala) da” — / (@'|e") (2| ()]r) d”

_ / (' — 2")a" (z"|a) da" — / 8(z' — 2")(z) (2" ]a) da”

Similarly,

Wiasla) = [ o o) (<ingl) (") a0~ [[6(a" 2o} (a"le) as”

Inserting in the Gaussian wave packet,

Similarly,

| Apla) /5 o — ( 88 ) [(27rd2)_1/4exp (“przxﬁ _ e ;d§”>)2>} da”
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= /5(35’ — ") <zh2x;2> {(27rd2)1/4 exp <i<p%x” — (=" 4d§x>)2)] dx"

Showing
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1.19 Spin Expectation Value

1.19.1 Expectation Value

Compute
((AS,)?) = (S2) — (Sx)*

where the expectation value is taken for the |S,;+) state. Using your result, check the
generalized uncertainty relation

(AA*)(AB)?) = S {4, B))?

| =

with A — Sx, B — 5,,.

As a reminder,

S = SI04) =D + (1) (+)]
ih

Sy = =S+ (=) = (1) (+])

|Sz§+> = |+>

From this, we can find

For the expectation values,

(S7) = (S:5+|S218:5+) = % (A D+ (=) D) =

(S2) = g (HIH =D+ (=) DI+ =0

(a8 ="
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Similarly, we can show

(A ="
Let’s check the generalized uncertainty relation,
(15, 5,1) = (ih82) = 2 (4] (1) (+) — (1) (=D 1) = -
(AS.)(A5,)) > 1S S,
ht R
16216

1.19.2 Uncertainty Relation
Check the uncertainty relation with A — S,, B — S, for the |S,;+) state.

As a reminder,

1Se; ) = = 1+) + —= =)

E)—‘
Sl

Let’s calculate expectation values,

<%=%WHFWﬂHWﬂ%HWHH%=%

o | S

<M:%H+FMHFWM4HWﬂ+HF

(AS,)%) =0

We can convince ourselves that ((AS,)?) = 0.
Checking the uncertainty relation,

([S2:Sy]) = @55;>==EZ*[¢+\4—<—H[O+?<*%)-—(P—><—Wﬂﬂ+ﬁ-+\—>]==0
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1.20 Uncertainty Product
Find the linear combination of |+) and |—) kets that maximizes the uncertainty product
(AS:)")((AS,)?)

Verify explicitly that for the linear combination you found, the uncertainty relation
for S, and 9, is not violated

In general,

h
2

h2

2
(AS,)2) = " (W) () + (=) (D) - ( (W[ =) + (1) <+|>1|W>)

2

(AS)2) = " @[ (4 + (1) (D) - (ﬁ

=7 — () (=D = (=) <+I)]I‘If>>

We can set
0) = a|+) + (1 - a®)" exp(iB) |-)
This is functionally equivalent to |§ -7;+). Inserting this in,
52
((AS,)?%) = - 4a*(1 — a®) cos*(B)]

2

(88, = 1~ 401 — o) sin?(9)
Multiplying the two together,
((AS:)){(ASy)*) = 7112[1 —4a’(1 = a®) + da*(1 — a®) sin*(23)]
We want to set = 7/4,
4
= E[

This is maximized when a? = 0 or 1, which means

1 —4a*(1 — a®) + 4a*(1 — a®)?]

+[+)

exp (<7 ) 19

+ |+) has already been done in the previous question,
s ih? ih? i ih?
exp (=5) -1 | 5 1) = G20 -] 1 () = -5

The uncertainty relation gives i* /16 on both sides.

) =
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1.21 Uncertainty Product

Evaluate the r — p uncertainty product ((Az)?)((Ap)?) for a one-dimensional particle
confined between two rigid walls

v — 0 for0<z<a,
) oo otherwise

Do this for both the ground and excited states.

For a particle in a box, the solution is

2
U= \/>sin (@)
a a

We want to calculate the uncertainty product,
(Az)?) = (2*) — (z)”

So let’s look at each component individually,

(oo} a 2
(2®) = / U2V dr = / Zx?sin (@) dz
0

For the momentum,

It is helpful to know,
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We can now calculate,

2ihnm [¢ . T nmx
=2 e () eos (M) =0
hin2n?
(App) = 2
Combining these,

1 1

2 2 32,2 2( 1

(Ax)){(Ap)?) = Kon?m (12 anﬂz)
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1.22 Balancing a Pencil

Estimate the rough order of magnitude of the length of time that an ice pick can be
balanced on its point if the only limitation is that set by the Heisenberg uncertainty
principle. Assume that the point is sharp and that the point and the surface on which
it rests are hard. You may make approximations which do not alter the general order
of magnitude of the result. Assume reasonable values for the dimensions and weight
of the ice pick. Obtain an approximate numerical result and express it in seconds.

We can model this as an inverted pendulum,

0(t) = aexp (ﬁ) 1 bexp < ‘?t)

From the uncertainty principle,
Az =10 = (a+b)l
db g

Ap = mla = j(a —byml = m+\/gl(a — b)
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1.23 Degenerate Eigenkets

Consider a three-dimensional ket space. If a certain set of orthonormal kets-say, |1),
|2), |3)-are used as the base kets, the operators A and B are represented by

a 0 0 b 0 0
A=[0 -« 0|, B=|0 0 —ib
0 0 -a 0 ib 0

with ¢ and b both real.

1.23.1 Degenerate spectrum

Obviously A exhibits a degenerate spectrum. Does B also exhibit a degenerate spec-
trum?

To determine if B is degenerate, let’s solve the characteristic equation,

b—Xx 0 0
det(B—Al)=det| 0 -\ —ib
0 b =

— (b- N\ 1)

Since there are repeated eigenvalues, lambda = +b, there is degeneracy.

1.23.2 Commute

Show that A and B commute.

To show that A and B commute, we need to show that AB = BA,

a 0 0 b 0 0 ab 0 0
AB=|0 —-a 0 0 0 —ib]=10 0 iab
0 0 -—a 0 b 0 0 —iab O
b 0 0 a O 0 ab 0 0
BA=|0 0 —ib 0 —a 0 |=1]0 0 iab
0 b 0 0 0 -—a 0 —iab O
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1.23.3 Simultaneous eigenkets

Find a new set of orthonormal kets which are simultaneous eigenkets of both A and
B. Specify the eigenvalues of A and B for each of the three eigenkets. Does your
specification of eigenvalues completely characterize each eigenket?

A has eigenvalues A = +a. To find a,
0 T 0

—2a y]l =10

—2a z 0

1
la) = |0
0
Similarly,

. 1|0
—a)=— |1
V2|4

We choose imaginary components because we know the solution to |b), and we want the eigen-
vectors to be orthonormal.

|b>:ﬁ —12

We can show that these are simultaneous eigenkets

Ala) = ala)
Al-a) = —al|-a)
Alb) = —alb)
Bla) =bla)

B|—a) = —-b|—a)
B1b) =0b|b)
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1.24 Spinors

1.24.1 Matrix representation

Prove that (1/v/2)(1 + io,) acting on a two-component spinor can be regarded as the
matrix representation of the rotation operator about the z-axis by angle —7/2. (The
minus sign signifies that the rotation is clockwise).

The rotation matrix is given by

cos (ﬁ) —id - sin (;b) (1.24.1)

Clockwise rotation about the  — axis by —n/2 implies that ¢ = —7/2,
) g g (l)
cos { — i - sin (—
1
—(1 +1i0,
(1+io,)
1.24.2 Matrix Representation

Construct the matrix representation of S, when the eigenkets of S, are used as base
vectors.

We can write S, as

S, = 2;5(1 - iom)az%(l +ic,)
:Z {11 _11] [(1) 01] [1 i]
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1.25 Operator

Some authors define an operator to be real when every member of its matrix elements
(b'|Alb) is real in some representation ({|')} basis in this case). Is this concept repre-
sentation independent, that is, do the matrix elements remain real even if some basis
other than {|V’)} is used? Check your assertion using familiar operators such as S, and
S, (see Problem 24) or z and p,.

Given a basis {|c)}, we can write
dy= ) 'l
b/
We can insert an operator,

/|A|C// ZZ |b/ b/|A|b//> <b”‘ //>

b’ b’

Since each braket is a scalar, we can arrange them freely,

= > () "[e") B |AP")

b’ b

(c'|b"y (1]} needs to be real, but the individual components don’t need to be.
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1.26 Transformation Matrix

Construct the transformation matrix that connects the S, diagonal basis to the S,
diagonal basis. Show that your result is consistent with the general relation

U =3 1) @)

In the S, basis,

{sz;+> = |+)
‘525 _> = |_>
1S0i4) = =1+ + 1)
182=) = =(1+) = 1)
In the S, basis,
{|SI;+>’ =+
12:-)' =)

We want to find a matrix U such that

Se;+) = U |5 +)
‘Sm; *>/ =U |Sm§ *>

We want to solve

1
1\ _ (Un Upe V2
0 U Uz 1
V2
€
0\ (U Ui V2
1 U Uz 1
V2
The first set of equations gives us
1
1=—Upn+U
\@( 11+ Uiz)
0= (U1 + Uss)
= pUnt+ Uz
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which implies Us; = —Uss. We can do the same thing with the second equation to show that
Ui1 = Uqa. The easiest matrix that satisfies all of these conditions is

()

We can find the transformation matrix another way,

U=118) (S| = 12 (1) ((H + (=D + =) (H = (=]

S



1.27. TRANSFORMATION MATRIX 47

1.27 Transformation Matrix

1.27.1 Functions

Suppose that f(A) is a function of a Hermitian operator A with the property Ala’) =
a'|a’). Evaluate (b”|f(A)|b') when the transformation matrix from the o’ basis to the
basis is known.

We want to insert identity,
OFAW) = ®"]a") (" |f(A)ld’) (@' [b)
We know that
fA)|d') = f(a')la’)

Our sum is now,

=Y f(d){"la") (a"a’) (')

i

a’,a

By orthogonality,
=Y f(a) (t'|a) (' V)
1.27.2 Continuous Spectra

Using the continuum analogue of the result obtained in (a), evaluate
®"|F(r)lp")

Simplify your expression as far as you can. Note that r is /22 + y2 + 22, where z, v,
and z are operators.

In the continuous spectrum,

Using

We insert this,
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In spherical coordinates,

—y

with ¢ = [p" — p"'|.

[©]
"
S
Ve
-~.
=y
|
Sh

CHAPTER 1.

"1’ cos(6)

FUNDAMENTAL CONCEPTS

) dr’d cos(6)
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1.28 Poisson Bracket

1.28.1 Classical Poisson Bracket

Let z and p, be the coordinate and linear momentum in one dimension. Evaluate the
classical Poisson bracket

[.CE, F(pr)} classical

By definition,

_ 0z 9F(p;) Oz OF(ps)
Oz Opy Op: Ox

[va(pr)]cl

The second term dies so,

OF (p.)
Opz

1.28.2 Commutator

Let = and p, be the corresponding quantum-mechanical operators this time. Evaluate

the commutator
1PLa
T, ex
P\

Using the Dirac rule,

which means we simple need to evaluate,

P 1Pz0
P\ ia ( iPea >
"/ xp

Ope h

1.28.3 Eigenvalues
Using the result obtained in (b), prove that

exp (L)1) (le!) =’ o)
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is an eigenstate of the coordinate operator x. What is the corresponding eigenvalue?

Using our vector,

) = oxp (22 1)

Expanding the commutation relation from above,

xF(pL) - F(pi)l‘ = - = aF(pw)

Acting = on our vector,

z|V) = zexp (zp;za) |z")

= —aexp (nga> |z") + exp (zp;z) z'|z')

= (@' —a) |0)
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1.29 Commutation Relations

1.29.1 Gottfried
On page 247, Gottfried (1966) states that

oF

[z, G(P)] = ik G oz,

Opi

can be easily derived from the fundamental commutation relations for all functions
of I’ and G that can be expressed as power series in their arguments. Verify this
statement.

As we showed in the previous question,

oG
[zi, G(D)]e = p;

Using Dirac’s rule,
[, O] = in

The same argument can be made for [p;, F(Z)].

1.29.2 Example

Evaluate [22,p?]. Compare your result with the classical Poisson bracket [22, p?].assical-

Acting the commutator on a general vector,

T ,02(22T)
2 2 232 2
Evaluating,
= h?[20 4 420]

[x%,p?] = 2ih{z,p}

(22, p*]a = dap

We can make these two equal using Dirac’s rule.
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1.30 Translation Operator

The translation operator for a finite (spatial) displacement is given by

9<B:exp<"§'l>

where p is the momentum operator.

1.30.1 Commutation

Evaluate

-

(i, 7 ()]

Using Dirac’s rule as well as the result from question 28,

1.30.2 Translation

Using (a)(or otherwise), demonstrate how the expectation value (z) changes under
translation.

Acting the translation operator on a vector gives
) = 7 ()| 9)
The expectation value
(V|| 0) = (W7 (1) 2.7 ()| W)
Using the commutation relation from before,

= (|71 O)T (2| ®) + (2|71 (17 (1) ¥)

= (U|z| D) +Zli

=(z)+1
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1.31 Translation Operator

In the main text we discussed the effect of 7(dZ’) on the position and momentum
eigenkets and on a more general state ket |o). We can also study the behavior of
expectation values (r) and (p) under infinitesimal translation. Using (1.6.25), (1.6.45),
and |a) — 7 (dZ’) |a) only, prove (z) — (z)+dZ’, (p) — (p) under infinitesimal translation.

1.6.25,
%, 7 (d7)] = di’
1.6.45,
[P, 7 (d")] = 0

The expectation value of x,

(o'|z|a’) = (a| 7T (dT)z T (dF')|a)
= (a|T7N(dT) (T (dZ)z + dT')|c)

= (x) + d7’

Similarly,

(o'[pla) = (| TT(dZ)pT (dF) )
= (a|7T(dZ).7 (dZ')pla)

= (alpla) = (p)
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1.32 Gaussian Wave Packet

1.32.1 Expectation Values

Verify (1.7.39a) and (1.7.39b) for the expectation value of p and p? from the Gaussian
wave packet of (1.7.35)

The Gaussian wave packet,

1 :L,IQ
/! _ - Iz
(2|a) = YT exp (zkx 2d2)

The expectation value is

) = ol (—in ) @'l

oo 1 12 /2 /
= / —i73, ©XP <—ikx’ - ;d?) (—ih) (exp (ikz’ - 2xd2) (Zk - ;)) dr’
oo T

For p?,

2

@) = 12 {ale") L (2/]a)

da?

Since we know

/ rexp(—z?) dx =0

— 00

we can only write the terms that don’t die,
00 712]{:2 22 52 /2 h21.l2 /2
= /,Oo 1724 &P <_d> g P <_d> g P (w) de

W o
—ﬁ—Fhk‘
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1.32.2 Momentum space wave function

Evaluate the expectation value of p and p? using the momentum space wave function
(1.7.42).

The wave packet in momentum space,

< ,| > d1/2 . ( (p/hk)2d2>
a)=———exp| ——-5—
P pi/2pa P 2n2
For p,
(p) = (alp) p (p|e)
oo d (p/ _ hk)2d2
— [ 7hﬂ1/2pexp (h2 dp
= hk

Similarly,

(*) = (alp) p° (pl)

< g b — hk)2d2
= / el exp ((n)> ap

R g,
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1.33 Momentum Translation Operator
1.33.1 Proofs

Prove the following:

0
(p'|z|a) = Zh(Tp' (']

d
(Blz]a) = [ dp' ¢E(p’)iha?¢a(p’)

(0'|z]e) = (p'[x[p”) (p"]alpha) = @'|x|p") (p'|a)

.0
= Zh(?T)’ <Pl|a>

(Blala) = (Blp") (0lp") (p'ler)

_ / dp'¢z<p')ma%¢a<p/)

1.33.2 Physical significance
What is the physical significance of

1=
exp <h)

where z is the position operator and = is some number with the dimension of momen-
tum? Justify your answer

This is the momentum translation operator.
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