Cohen-Tannoudji Solutions

Benjamin D. Suh

December 30, 2019

Contents

1	asdf		5
2	The	Mathematical Tools of Quantum Mechanics	7
	2.1	Hermitian Operator	$\overline{7}$
		2.1.1 Adjoint	7
		2.1.2 Commutator	7
		2.1.3 Delta Function	8
		2.1.4 Trace	8
		2.1.5 Multiplying Operators	8
		2.1.6 More Trace	9
	2.2	Pauli Matrices	10
		2.2.1 Eigenvalues	10
		2.2.2 Projection Operator	10
	2.3	Kets and Operators	12
		2.3.1 Normalized Kets	12
		2.3.2 Projection Operators	12
	2.4	Operators	14
		2.4.1 Hermitian	14
		2.4.2 Projection Operator	14
		2.4.3 More Projectors	14
	2.5	Orthogonal Projector	16
	2.6	Pauli Matrices	17
	2.7	Pauli Matrices	18
	2.8	One dimensional Particle	19
		2.8.1 Expectation Value	19
		2.8.2 Closure	20
	2.9	Hamiltonian	21
		2.9.1 Commutator	21
		2.9.2 One-Dimensional Particle	21
	2.10	Transformation Function	24
	2.11	Commuting Observable and CSCO's	25
		2.11.1 Hermitian	25
		2.11.2 Common eigenbasis	25
		2.11.3 CSCO	25

2.12 Spin (Operators	26
2.12.1	Matrix representation	26
2.12.2	Commutator	26
2.12.3	CSCO	27

Chapter 1

asdf

Chapter 2

The Mathematical Tools of Quantum Mechanics

2.1 Hermitian Operator

 $|\phi_n\rangle$ are the eigenstates of a Hermitian operator H (H is, for example, the Hamiltonian of an arbitrary physical system). Assume that the states $|\phi_n\rangle$ form a discrete orthonormal basis. The operator U(m,n) is defined by:

$$U(m,n) = \left|\phi_m\right\rangle \left\langle\phi_n\right|$$

2.1.1 Adjoint

Calculate the adjoint $U^{\dagger}(m,n)$ of U(m,n).

From the definition of the adjoint,

$$U^{\dagger}(m,n) = |\phi_n\rangle \langle \phi_m|$$

2.1.2 Commutator

Calculate the commutator [H, U(m, n)]

Let's act the commutator on a vector (looking ahead, we'll set the vector as $|\phi_n\rangle$),

$$\begin{split} \left[H,U\right] \left|\phi_{n}\right\rangle \\ H \left|\phi_{m}\right\rangle \left\langle\phi_{n}\right|\phi_{n}\right\rangle - \left|\phi_{m}\right\rangle \left\langle\phi_{n}\right|H \left|\phi_{n}\right\rangle \end{split}$$

$$H |\phi_{m}\rangle - n |\phi_{m}\rangle = (m - n) |\phi_{m}\rangle$$

$$H |\phi_m\rangle - n |\phi_m\rangle = (m - n) |\phi_m\rangle$$

The commutator is

$$[H, U(m, n)] = m - n$$

2.1.3 Delta Function

Prove the relation:

$$U(m,n)U^{\dagger}(p,q) = \delta_{nq}U(m,p)$$

Writing this out,

$$U(m,n)U^{\dagger}(p,q) = |\phi_m\rangle \langle \phi_n | \phi_q \rangle \langle \phi_p |$$

The middle section dies unless n = q, leaving us the delta function,

$$= \delta_{nq} \left| \phi_m \right\rangle \left\langle \phi_p \right| = \delta_{nq} U(m, p) \tag{2.1.1}$$

2.1.4 Trace

Calculate $Tr{U(m,n)}$, the trace of the operator U(m,n).

By definition, the trace is given by

$$Tr(U) = \sum_{\alpha} \left< \alpha | U | \alpha \right>$$

where α are the basis states.

$$=\sum_{\alpha}\left\langle \alpha|\phi_{m}\right\rangle \left\langle \phi_{n}|\alpha\right\rangle$$

We can convince ourselves that one part must be equal to zero at all times unless m = n,

$$Tr(U) = \delta_{mn}$$

2.1.5 Multiplying Operators

Let A be an operator, with matrix elements $A_{mn} = \langle \phi_m | A | \phi_n \rangle$. Prove the relation:

$$A = \sum_{mn} A_{mn} U(m, n)$$

Let's start by acting A on $|\phi_n\rangle$. We only need to sum over m in this case since we can use orthonormality for n. Writing out the sum,

$$A \left| \phi_n \right\rangle = \sum_m \left\langle \phi_m | A | \phi_n \right\rangle \left| \phi_m \right\rangle \left\langle \phi_n | \phi_n \right\rangle$$

2.1. HERMITIAN OPERATOR

 A_{mn} is a scalar, so we can move that around for free,

$$=\sum_{m}|\phi_{m}\rangle\left\langle \phi_{m}|A|\phi_{n}\right\rangle$$

When we perform the sum, the first part becomes identity, so we can remove it,

$$=A \left| \phi_n \right\rangle$$

2.1.6 More Trace

Show that $A_{pq} = Tr\{AU^{\dagger}(p,q)\}$.

We'll start with the right side. We can write the part inside the trace using the relation we found in part (e),

$$AU^{\dagger}(p,q) = \sum_{m,n} A_{mn}U(m,n)U^{\dagger}(p,q)$$

Using the relation found in part (c),

$$= \sum_{m,n} A_{mn} \delta_{nq} U(m,p)$$

Summing over n, we pick out n = q. We can then take the trace and use the result from part (d) to get a value for the trace of our operator U(m, p),

$$Tr\{AU^{\dagger}(p,q)\} = \sum_{m} A_{mq}\delta_{mp}$$

Again, summing over m picks out the m = p value,

 $= A_{pq}$

2.2 Pauli Matrices

In a two-dimensional vector space, consider the operator whose matrix, in an orthonormal basis $\{|1\rangle, |2\rangle\}$, is written:

$$\sigma_y = \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix}$$

2.2.1 Eigenvalues

Is σ_y Hermitian? Calculate its eigenvalues and eigenvectors (giving their normalized expansion in terms of the $\{|1\rangle, |2\rangle\}$ basis).

 σ_y is Hermitian. To find the eigenvalues, we need to solve the characteristic equation,

$$\det(\sigma_y - \lambda I) = \det\begin{pmatrix} -\lambda & -i \\ i & \lambda \end{pmatrix}$$

 $=\lambda^2-1=0$

Our eigenvalues are $\lambda = \pm 1$. We can show that the eigenvectors are

$$\begin{split} |\lambda = 1\rangle &= \frac{1}{\sqrt{2}} \begin{bmatrix} -i \\ 1 \end{bmatrix} \\ |\lambda = -1\rangle &= \frac{1}{\sqrt{2}} \begin{bmatrix} i \\ 1 \end{bmatrix} \end{split}$$

In the $|1\rangle$, $|2\rangle$ basis,

$$\begin{cases} |\lambda = 1\rangle = \frac{1}{\sqrt{2}}(-i|1\rangle + |2\rangle) \\ |\lambda = -1\rangle = \frac{1}{\sqrt{2}}(i|1\rangle + |2\rangle) \end{cases}$$

2.2.2 Projection Operator

Calculate the matrices which represent the projectors onto these eigenvectors. Then verify that they satisfy the orthogonality and closure relations.

By definition,

$$A = \left| \lambda = 1 \right\rangle \left\langle \lambda = 1 \right|$$

$$= \frac{1}{2}(-i|1\rangle + |2\rangle)(i\langle 1| + \langle 2|)$$
$$= \frac{1}{2} \begin{pmatrix} 1 & -i \\ i & 1 \end{pmatrix}$$

Similarly,

$$B = |\lambda = -1\rangle \langle \lambda = -1|$$
$$= \frac{1}{2} \begin{pmatrix} 1 & i \\ -i & 1 \end{pmatrix}$$

We can show that they are orthonormal by multiplying the two together, AB = BA = 0. We can show completeness by adding them together, A + B = I.

2.3 Kets and Operators

The state space of a certain physical system is three-dimensional. Let $\{|u_1\rangle, |u_2\rangle, |u_3\rangle\}$ be an orthonormal basis of this space. The kets $|\psi_0\rangle$ and $|\psi_1\rangle$ are defined by:

$$\begin{split} |\psi_0\rangle &= \frac{1}{\sqrt{2}} |u_1\rangle + \frac{i}{2} |u_2\rangle + \frac{1}{2} |u_3\rangle \\ |\psi_1\rangle &= \frac{1}{\sqrt{3}} |u_1\rangle + \frac{i}{\sqrt{3}} |u_3\rangle \end{split}$$

2.3.1 Normalized Kets

Are these kets normalized?

To tell if these kets are normalized, we need to find the norm. Let's start with $|\psi_0\rangle$,

$$\langle \psi_0 | \psi_0 \rangle = \left(\frac{1}{\sqrt{2}} \langle u_1 | -\frac{i}{2} \langle u_2 | +\frac{1}{2} \langle u_3 | \right) \left(\frac{1}{\sqrt{2}} | u_1 \rangle + \frac{i}{2} | u_2 \rangle + \frac{1}{2} | u_3 \rangle \right)$$

Using orthonormality, we can ignore most of these terms,

$$= \frac{1}{2} \langle u_1 | u_1 \rangle + \frac{1}{4} \langle u_2 | u_2 \rangle + \frac{1}{4} \langle u_3 | u_3 \rangle = 1$$

Since we have an orthonormal basis, we can see that $|\psi_0\rangle$ is normalized. For $|\psi_1\rangle$,

$$\langle \psi_1 | \psi_1 \rangle = \left(\frac{1}{\sqrt{3}} \langle u_1 | -\frac{i}{\sqrt{3}} \langle u_3 | \right) \left(\frac{1}{\sqrt{3}} | u_1 \rangle + \frac{i}{\sqrt{3}} | u_3 \rangle \right)$$
$$= \frac{1}{3} \langle u_1 | u_1 \rangle + \frac{1}{3} \langle u_3 | u_3 \rangle = \frac{2}{3}$$

 $|\psi_1\rangle$ is not normalized.

2.3.2 **Projection Operators**

Calculate the matrices ρ_0 and ρ_1 representing, in the $\{|u_1\rangle, |u_2\rangle, |u_3\rangle\}$ basis, the projection operators onto the state $|\psi_0\rangle$ and onto the state $|\psi_1\rangle$. Verify that these matrices are Hermitian.

We define the projection operator as

$$\rho_0 = \left| \psi_0 \right\rangle \left\langle \psi_0 \right|$$

2.3. KETS AND OPERATORS

$$= \left(\frac{1}{\sqrt{2}}\left|u_{1}\right\rangle + \frac{i}{2}\left|u_{2}\right\rangle + \frac{1}{2}\left|u_{3}\right\rangle\right) \left(\frac{1}{\sqrt{2}}\left\langle u_{1}\right| - \frac{i}{2}\left\langle u_{2}\right| + \frac{1}{2}\left\langle u_{3}\right|\right)$$

We can define our orthonormal basis however we want, but for ease, let's use

$$|u_1\rangle = \begin{bmatrix} 1\\0\\0 \end{bmatrix}; |u_2\rangle = \begin{bmatrix} 0\\1\\0 \end{bmatrix}; |u_3\rangle = \begin{bmatrix} 0\\0\\1 \end{bmatrix}$$

In this basis,

$$\rho_0 = \begin{bmatrix} \frac{1}{2} & -\frac{i}{2\sqrt{2}} & \frac{1}{2\sqrt{2}} \\ \frac{i}{2\sqrt{2}} & \frac{1}{4} & \frac{i}{4} \\ \frac{1}{2\sqrt{2}} & -\frac{i}{4} & \frac{i}{4} \end{bmatrix}$$

We use the Hermitian condition (1.8) to show that ρ_0 is Hermitian. Similarly,

$$\rho_{1} = |\psi_{1}\rangle \langle \psi_{1}|$$

$$= \left(\frac{1}{\sqrt{3}}|u_{1}\rangle + \frac{i}{\sqrt{3}}|u_{3}\rangle\right) \left(\frac{1}{\sqrt{3}}\langle u_{1}| - \frac{i}{\sqrt{3}}\langle u_{3}|\right)$$

$$= \begin{bmatrix} \frac{1}{3} & 0 & -\frac{i}{3} \\ 0 & 0 & 0 \\ \frac{i}{3} & 0 & \frac{1}{3} \end{bmatrix}$$

Again, we see that ρ_1 is Hermitian.

2.4 Operators

Let K be the operator defined by $K = |\phi\rangle \langle \psi|$, where $|\phi\rangle$ and $|\psi\rangle$ are two vectors of the state space.

2.4.1 Hermitian

Under what condition is K Hermitian?

Following the Hermitian condition (1.8),

$$K = K^{\dagger}$$

$$\left|\phi\right\rangle\left\langle\psi\right| = \left|\psi\right\rangle\left\langle\phi\right|$$

One possible way for K to be Hermitian is for $|\phi\rangle = |\psi\rangle$.

2.4.2 Projection Operator

Calculate K^2 . Under what condition is K a projector?

$$K^{2} = \left|\phi\right\rangle \left\langle\psi\right|\phi\right\rangle \left\langle\psi\right|$$

K is a projector if $|\phi\rangle = |\psi\rangle$.

2.4.3 More Projectors

Show that K can always be written in the form $K = \lambda P_1 P_2$ where λ is a constant to be calculated and P_1 and P_2 are projectors.

We set

$$P_1 = |\phi\rangle \langle \phi|$$
$$P_2 = |\psi\rangle \langle \psi|$$

Now if we multiply them together,

$$P_1 P_2 = \left|\phi\right\rangle \left\langle\phi\right|\psi\right\rangle \left\langle\psi\right|$$

14

2.4. OPERATORS

The middle part is just a scalar, so to get rid of that, we need to multiply by some constant,

$$\lambda = \frac{1}{\langle \phi | \psi \rangle}$$

Combining all of this,

$$\lambda P_1 P_2 = \left|\phi\right\rangle \left\langle\psi\right| = K$$

2.5 Orthogonal Projector

Let P_1 be the orthogonal projector onto the subspace \mathscr{E}_1 , P_2 the orthogonal projector onto the subspace \mathscr{E}_2 . Show that, for the product P_1P_2 to be an orthogonal projector as well, it is necessary and sufficient that P_1 and P_2 commute. In this case, what is the subspace onto which P_1P_2 projects?

Let's say that

$$P_1 = |\phi\rangle \langle \phi|$$
$$P_2 = |\psi\rangle \langle \psi|$$

where $|\phi\rangle$ and $|\psi\rangle$ are in \mathscr{E}_1 and \mathscr{E}_2 respectively. If P_1 and P_2 commute, this implies

 $P_1P_2 = P_2P_1$

$$\ket{\phi}ra{\phi}\psi
angle\left\langle\psi
ight|=\ket{\psi}ra{\psi}\phi
ight
angle\left\langle\phi
ight|$$

What this implies,

 $\langle \phi | \psi \rangle = \langle \psi | \phi \rangle$

We imagine that if we act P_1P_2 on either $|\phi\rangle$ or $|\psi\rangle$, we get the same thing. P_1P_2 projects onto the overlap of \mathscr{E}_1 and \mathscr{E}_2 .

2.6 Pauli Matrices

The σ_x matrix is defined by

$$\sigma_x = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$$

Prove the relation:

$$\exp(i\alpha\sigma_x) = I\cos(\alpha) + i\sigma_x\sin(\alpha)$$

where I is the 2×2 unit matrix.

We can expand the left-side using a Taylor expansion,

$$\exp(i\alpha\sigma_x) = I + i\alpha\sigma_x + \frac{1}{2}(i\alpha)^2\sigma_x^2 + \dots$$
$$= \begin{pmatrix} 1 & 0\\ 0 & 1 \end{pmatrix} + i\alpha \begin{pmatrix} 0 & 1\\ 1 & 0 \end{pmatrix} - \frac{\alpha^2}{2} \begin{pmatrix} 0 & 1\\ 1 & 0 \end{pmatrix} \begin{pmatrix} 0 & 1\\ 1 & 0 \end{pmatrix} + \dots$$
$$= \begin{pmatrix} 1 - \frac{\alpha^2}{2} + \dots & i\alpha + \dots\\ i\alpha + \dots & 1 - \frac{\alpha^2}{2} + \dots \end{pmatrix}$$

Similarly, if we expand the right side,

$$I\cos(\alpha) = \begin{pmatrix} 1 - \frac{\alpha^2}{2} + \dots & 0\\ & & \\ 0 & 1 - \frac{\alpha^2}{2} \end{pmatrix}$$
$$i\sigma_x \sin(\alpha) = \begin{pmatrix} 0 & i\alpha + \dots\\ i\alpha + \dots & 0 \end{pmatrix}$$

2.7 Pauli Matrices

Establish for the σ_y matrix given in exercise 2, a relation analogous to the one proved for σ_x in the preceding exercise. Generalize for all matrices of the form:

$$\sigma_u = \lambda \sigma_x + \mu \sigma_y$$

with:

$$\lambda^2 + \mu^2 = 1$$

Calculate the matrices representing $\exp(2i\sigma_x)$, $(\exp(i\sigma_x))^2$ and $\exp(i(\sigma_x + \sigma_y))$. Is $\exp(2i\sigma_x)$ equal to $(exp(i\sigma_x))^2$? $\exp(i(\sigma_x + \sigma_y))$ to $\exp(i\sigma_x)\exp(i\sigma_y)$?

Following the methodology in question 6, we expand the exponential,

$$\exp(i\alpha\sigma_y) = I + i\alpha\sigma_y + \frac{1}{2}(i\alpha)^2\sigma_y^2 + \dots$$

$$= \begin{pmatrix} 1 - \frac{\alpha^2}{2} + \dots & \alpha + \dots \\ -\alpha & 1 - \frac{\alpha^2}{2} + \dots \end{pmatrix}$$

We can convince ourselves that this is

$$\exp(i\alpha\sigma_y) = I\cos(\alpha) + i\sigma_y\sin(\alpha)$$

For σ_u , we can't use the normal rules of exponential multiplication (which answers the last part of this question). Expanding,

$$\exp(i\alpha(\lambda\sigma_x+\mu\sigma_y)) = I + i\alpha(\lambda\sigma_x+\mu\sigma_y) + \frac{1}{2}(i\alpha)^2(\lambda^2\sigma_x^2+\mu^2\sigma_y^2+\lambda\mu\sigma_x\sigma_y+\lambda\mu\sigma_y\sigma_x)$$

$$= I\cos(\alpha) + i\sigma_x\sin(\alpha\lambda) + i\sigma_y\sin(\alpha\mu)$$

Using the relation found in question 6,

$$\exp(2i\sigma_x) = I\cos(2) + i\sigma_x\sin(2)$$

$$(\exp(i\sigma_x))^2 = I(\cos^2(1) - \sin^2(1)) + 2i\sigma_x \cos(1)\sin(1)$$

These are equal by using angle addition formulas.

2.8 One dimensional Particle

Consider the Hamiltonian ${\mathscr H}$ of a particle in a one-dimensional problem defined by:

$$\mathscr{H} = \frac{1}{2m}P^2 + V(X)$$

where X and P are the operators defined in ... and which satisfy the relation: $[X, P] = i\hbar$. The eigenvectors of \mathscr{H} are denoted by $|\phi_n\rangle$: $\mathscr{H} |\phi_n\rangle = E |\phi_n\rangle$, where n is a discrete index.

2.8.1 Expectation Value

Show that

$$\langle \phi_n | P | \phi_{n'} \rangle = \alpha \left\langle \phi_n | X | \phi_{n'} \right\rangle$$

where α is a coefficient which depends on the difference between E_n and $E_{n'}$. Calculate α (hint: consider the commutator $[X, \mathcal{H}]$).

We can use Dirac's rule to find the commutator of $[X, \mathscr{H}]$,

$$[X, \mathscr{H}] = i\hbar[X, \mathscr{H}]_{cl}$$
$$[X, \mathscr{H}]_{cl} = \frac{1}{m}P$$
$$[X, \mathscr{H}] = \frac{i\hbar}{m}P$$

A little bit of rearranging,

$$P = \frac{m}{i\hbar} [X, \mathscr{H}]$$

Inserting this in,

$$\frac{m}{i\hbar} \left\langle \phi_n | [X, \mathscr{H}] | \phi_{n'} \right\rangle$$

$$=\frac{m}{i\hbar}(\langle\phi_n|X\mathscr{H}|\phi_{n'}\rangle-\langle\phi_{n'}|\mathscr{H}X|\phi_n\rangle)$$

Using the eigenvectors of \mathscr{H} ,

$$= \frac{m}{i\hbar} (E_{n'} - E_n) \left\langle \phi_n | X | \phi_{n'} \right\rangle$$

2.8.2 Closure

From this, deduce, using the closure relation, the equation:

$$\sum_{n'} (E_n - E_{n'})^2 |\langle \phi_n | X | \phi_{n'} \rangle|^2 = \frac{\hbar^2}{m^2} \langle \phi_n | P^2 | \phi_n \rangle$$

We can get this by squaring both sides.

2.9 Hamiltonian

Let \mathscr{H} be the Hamiltonian operator of a physical system. Denote by $|\phi_n\rangle$ the eigenvectors of \mathscr{H} , with eigenvalues E_n :

$$\mathscr{H} \left| \phi_n \right\rangle = E_n \left| \phi_n \right\rangle$$

2.9.1 Commutator

For an arbitrary operator A, prove the relation:

$$\langle \phi_n | [A, \mathscr{H}] | \phi_n \rangle = 0$$

We can expand the commutator,

$$\langle \phi_n | A \mathscr{H} | \phi_n \rangle - \langle \phi_n | \mathscr{H} A | \phi_n \rangle$$

Using the eigenvalue relation,

$$= E_n \left\langle \phi_n | A | \phi_n \right\rangle - E_n \left\langle \phi_n | A | \phi_n \right\rangle = 0$$

2.9.2 One-Dimensional Particle

Consider a one-dimensional problem, where the physical system is a particle of mass m and potential energy V(X). In this case, \mathcal{H} is written:

$$\mathscr{H} = \frac{1}{2m}P^2 + V(X)$$

In terms of P, X, and V(X), find the commutators: $[\mathcal{H}, P]$, $[\mathcal{H}, X]$, and $[\mathcal{H}, XP]$

We want to use Dirac's rule,

$$[\mathscr{H},P]=i\hbar[\mathscr{H},P]_{cl}$$

$$=i\hbar\left(\frac{\partial\mathscr{H}}{\partial X}\frac{\partial P}{\partial P}-\frac{\partial\mathscr{H}}{\partial P}\frac{\partial P}{\partial X}\right)$$

Only the first term survives,

$$=i\hbar\frac{\partial V}{\partial X}$$

Similarly,

$$[\mathcal{H}, X] = -\frac{i\hbar}{m}P$$
$$[\mathcal{H}, XP] = i\hbar \left(X \frac{\partial V}{\partial X} - \frac{P^2}{m} \right)$$

Show that the matrix element $\langle \phi_n | P | \phi_n \rangle$ (which we shall interpret in chapter III as the mean value of the momentum in the state $|\phi_n\rangle$) is zero

Using the result shown previously,

$$P=-\frac{m}{i\hbar}[\mathscr{H},X]$$

Inserting this in,

$$\langle \phi_n | P | \phi_n \rangle = \frac{m}{i\hbar} \langle \phi_n | [X, \mathscr{H} | \phi_n \rangle$$

which we showed in part a to be zero.

Establish a relation between $E_k = \langle \phi_n | \frac{P^2}{2m} | \phi_n \rangle$ (the mean value of the kinetic energy in the state $|\phi_n \rangle$) and $\langle \phi_n | X \frac{dV}{dX} | \phi_n \rangle$. Since the mean value of the potential energy in the state $|\phi_n \rangle$ is $\langle \phi_n | V(X) | \phi_n \rangle$, how is it related to the mean value of the kinetic energy when:

$$V(X) = V_0 X^{\lambda}$$

 $(\lambda = 2, 4, 6, ...; V_0 > 0)$?

We recognize these as the components of $[\mathcal{H}, XP]$,

$$\langle \phi_n | [\mathscr{H}, XP] | \phi_n \rangle = i\hbar \left(\langle \phi_n | X \frac{dV}{dX} | \phi_n \rangle - \langle \phi_n | \frac{P^2}{m} | \phi_n \rangle \right)$$

We know the left side is equal to 0 from part a, so

$$\langle \phi_n | \frac{P^2}{2m} | \phi_n \rangle = \frac{1}{2} \langle \phi_n | X \frac{dV}{dX} | \phi_n \rangle$$

If the potential is some polynomial,

$$X\frac{dV}{dX} = \lambda V$$

2.9. HAMILTONIAN

$$\langle \phi_n | \frac{P^2}{2m} | \phi_n \rangle = \frac{1}{2} \lambda \langle \phi_n | V(X) | \phi_n \rangle$$

Since λ is constrained to be even, the kinetic energy is some integer multiple of the potential energy.

2.10 Transformation Function

Using the relation $\langle x|p \rangle = (2\pi\hbar)^{-1/2} \exp(ipx/\hbar)$, find the expressions $\langle x|XP|\psi \rangle$ and $\langle x|PX|\psi \rangle$ in terms of $\psi(x)$. Can these results be found directly in using the fact that in the $\{|x\rangle\}$ representation, P acts like $\frac{\hbar}{i} \frac{d}{dx}$?

We know that $|x\rangle$ is an eigenvector of X with eigenvalue x, so let's get rid of that first,

$$\langle x|XP|\psi\rangle = x\,\langle x|P|\psi\rangle$$

We can now insert identity twice,

$$= x \langle x|p \rangle \langle p|P|\psi \rangle$$
$$= x \langle x|p \rangle p \langle p|x \rangle \langle x|\psi \rangle$$

We know that when we multiply $\langle x|p\rangle \langle p|x\rangle$, we should get unity,

$$= xp\psi(x) = -i\hbar x \frac{d\psi(x)}{dx}$$

If we treat p as $-i\hbar \frac{d}{dx}$, we get the same thing as if $P = \frac{\hbar}{i} \frac{d}{dx}$. Similarly,

 $\langle x|PX|\psi\rangle = \langle x|p\rangle \, \langle p|PX|x\rangle \, \langle x|\psi\rangle$

$$= \langle x|p\rangle \, px \, \langle x|p\rangle \, \psi(x)$$

$$px\psi(x)$$

$$= -i\hbar \frac{d(x\psi(x))}{dx}$$

2.11 Commuting Observable and CSCO's

Consider a physical system whose three-dimensional state space is spanned by the orthonormal basis by the three kets $|u_1\rangle$, $|u_2\rangle$, $|u_3\rangle$. In the basis of these three vectors, taken in this order, the two operators H and B are defined by:

$$H = \hbar\omega_0 \begin{pmatrix} 1 & 0 & 0\\ 0 & -1 & 0\\ 0 & 0 & -1 \end{pmatrix}; \quad B = b \begin{pmatrix} 1 & 0 & 0\\ 0 & 0 & 1\\ 0 & 1 & 0 \end{pmatrix}$$

where ω_0 and b are real constants.

2.11.1 Hermitian

Are H and B Hermitian?

By observation, yes.

2.11.2 Common eigenbasis

Show that H and B commute. Give a basis of eigenvectors common to H and B.

Let's start by solving the characteristic equation for H,

$$\det H - \lambda I = \det \begin{pmatrix} 1 - \lambda & 0 & 0 \\ 0 & -1 - \lambda & 0 \\ 0 & 0 & -1 - \lambda \end{pmatrix} = 0$$

The eigenvalues are $\lambda = \pm 1$. We have a degeneracy for $\lambda = -1$, but we can find the easiest eigenvectors for the other eigenvalues,

$$|1\rangle = \begin{bmatrix} 1\\0\\0 \end{bmatrix}; \quad |-1\rangle = \frac{1}{\sqrt{2}} \begin{bmatrix} 0\\1\\1 \end{bmatrix}$$

Now we know that we want this basis to be orthonormal, so to fulfill this condition,

$$|0\rangle = \frac{1}{\sqrt{2}} \begin{bmatrix} 0\\ 1\\ -1 \end{bmatrix}$$

2.11.3 CSCO

Of the set of operators: $\{H\}$, $\{B\}$, $\{H, B\}$, $\{H^2, B\}$, which form a CSCO?

2.12 Spin Operators

In the same state space as that of the preceding exercise, consider two operators L_z and S defined by:

$$\begin{cases} L_{z} |u_{1}\rangle = |u_{1}\rangle, & L_{z} |u_{2}\rangle = 0, & L_{z} |u_{3}\rangle = -|u_{3}\rangle \\ S |u_{1}\rangle = |u_{3}\rangle, & S |u_{2}\rangle = |u_{2}\rangle, & S |u_{3}\rangle = |u_{1}\rangle \end{cases}$$

2.12.1 Matrix representation

Write the matrices which represent, in the $\{|u_1\rangle, |u_2\rangle, |u_3\rangle\}$ basis, the operators L_z, L_z^2 , S, S^2 . Are these operators observable?

From observation,

$$L_z = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & -1 \end{pmatrix}$$
$$S = \begin{pmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{pmatrix}$$

From this, we can show

$$L_z^2 = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$
$$S^2 = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

These are all observables.

2.12.2 Commutator

Give the form of the most general matrix which represents an operator which commutes with L_z . Same question for L_z^2 , then for S^2 .

Let's say we have some matrix,

$$M = \begin{pmatrix} m_{11} & m_{12} & m_{13} \\ m_{21} & m_{22} & m_{23} \\ m_{31} & m_{32} & m_{33} \end{pmatrix}$$

2.12. SPIN OPERATORS

Acting L_z on it,

$$L_z M = \begin{pmatrix} m_{11} & m_{12} & m_{13} \\ 0 & 0 & 0 \\ -m_{31} & -m_{32} & -m_{33} \end{pmatrix}$$
$$ML_z = \begin{pmatrix} m_{11} & 0 & -m_{13} \\ 0 & 0 & 0 \\ m_{31} & 0 & -m_{33} \end{pmatrix}$$
(2.12.1)

In order for these to commute, only m_{11} and m_{33} survive,

$$M = \begin{pmatrix} m_{11} & 0 & 0\\ 0 & 0 & 0\\ 0 & 0 & m_{33} \end{pmatrix}$$

We can repeat the process for $L^2_z,\,$

$$L_z^2 M = \begin{pmatrix} m_{11} & 0 & m_{13} \\ 0 & 0 & 0 \\ m_{31} & 0 & m_{33} \end{pmatrix}$$
$$ML_z^2 = \begin{pmatrix} m_{11} & 0 & m_{13} \\ 0 & 0 & 0 \\ m_{31} & 0 & m_{33} \end{pmatrix}$$

All four corners survive, and we can add a term in the middle,

$$M = \begin{pmatrix} m_{11} & 0 & m_{13} \\ 0 & m_{22} & 0 \\ m_{31} & 0 & m_{33} \end{pmatrix}$$

Since S^2 is the identity matrix, any matrix will commute with it.

2.12.3 CSCO

Do L_z^2 and S form a CSCO? Give a basis of common eigenvectors.

Solving the characteristic equation for L^2_z since S has a degeneracy,

$$\det(L_z^2 - \lambda I) = \det \begin{pmatrix} 1 - \lambda & 0 & 0\\ 0 & -\lambda & 0\\ 0 & 0 & 1 - \lambda \end{pmatrix}$$

Our eigenvalues are $\lambda = 0, 1$. We have a degeneracy, so our eigenvectors are

$$|1\rangle = \frac{1}{\sqrt{2}} \begin{bmatrix} 1\\0\\1 \end{bmatrix}; \quad |0\rangle = \begin{bmatrix} 0\\1\\0 \end{bmatrix}$$

Now by orthonormality,

$$|a\rangle = \frac{1}{\sqrt{2}} \begin{bmatrix} 1\\0\\-1 \end{bmatrix}$$