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Chapter 2

The Mathematical Tools of
Quantum Mechanics

2.1 Hermitian Operator

|φn〉 are the eigenstates of a Hermitian operator H (H is, for example, the Hamilto-
nian of an arbitrary physical system). Assume that the states |φn〉 form a discrete
orthonormal basis. The operator U(m,n) is defined by:

U(m,n) = |φm〉 〈φn|

2.1.1 Adjoint

Calculate the adjoint U†(m,n) of U(m,n).

From the definition of the adjoint,

U†(m,n) = |φn〉 〈φm|

2.1.2 Commutator

Calculate the commutator [H,U(m,n)]

Let’s act the commutator on a vector (looking ahead, we’ll set the vector as |φn〉),

[H,U ] |φn〉

H |φm〉 〈φn|φn〉 − |φm〉 〈φn|H|φn〉

H |φm〉 − n |φm〉 = (m− n) |φm〉

7
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The commutator is

[H,U(m,n)] = m− n

2.1.3 Delta Function

Prove the relation:

U(m,n)U†(p, q) = δnqU(m, p)

Writing this out,

U(m,n)U†(p, q) = |φm〉 〈φn|φq〉 〈φp|

The middle section dies unless n = q, leaving us the delta function,

= δnq |φm〉 〈φp| = δnqU(m, p) (2.1.1)

2.1.4 Trace

Calculate Tr{U(m,n)}, the trace of the operator U(m,n).

By definition, the trace is given by

Tr(U) =
∑
α

〈α|U |α〉

where α are the basis states.

=
∑
α

〈α|φm〉 〈φn|α〉

We can convince ourselves that one part must be equal to zero at all times unless m = n,

Tr(U) = δmn

2.1.5 Multiplying Operators

Let A be an operator, with matrix elements Amn = 〈φm|A|φn〉. Prove the relation:

A =
∑
mn

AmnU(m,n)

Let’s start by acting A on |φn〉. We only need to sum over m in this case since we can use
orthonormality for n. Writing out the sum,

A |φn〉 =
∑
m

〈φm|A|φn〉 |φm〉 〈φn|φn〉
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Amn is a scalar, so we can move that around for free,

=
∑
m

|φm〉 〈φm|A|φn〉

When we perform the sum, the first part becomes identity, so we can remove it,

= A |φn〉

2.1.6 More Trace

Show that Apq = Tr{AU†(p, q)}.

We’ll start with the right side. We can write the part inside the trace using the relation we
found in part (e),

AU†(p, q) =
∑
m,n

AmnU(m,n)U†(p, q)

Using the relation found in part (c),

=
∑
m,n

AmnδnqU(m, p)

Summing over n, we pick out n = q. We can then take the trace and use the result from part
(d) to get a value for the trace of our operator U(m, p),

Tr{AU†(p, q)} =
∑
m

Amqδmp

Again, summing over m picks out the m = p value,

= Apq
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2.2 Pauli Matrices

In a two-dimensional vector space, consider the operator whose matrix, in an orthonor-
mal basis {|1〉 , |2〉}, is written:

σy =

(
0 −i
i 0

)

2.2.1 Eigenvalues

Is σy Hermitian? Calculate its eigenvalues and eigenvectors (giving their normalized
expansion in terms of the {|1〉 , |2〉} basis).

σy is Hermitian. To find the eigenvalues, we need to solve the characteristic equation,

det(σy − λI) = det

(
−λ −i
i λ

)

= λ2 − 1 = 0

Our eigenvalues are λ = ±1. We can show that the eigenvectors are

|λ = 1〉 =
1√
2

[
−i
1

]

|λ = −1〉 =
1√
2

[
i
1

]
In the |1〉, |2〉 basis, 

|λ = 1〉 =
1√
2

(−i |1〉+ |2〉)

|λ = −1〉 =
1√
2

(i |1〉+ |2〉)

2.2.2 Projection Operator

Calculate the matrices which represent the projectors onto these eigenvectors. Then
verify that they satisfy the orthogonality and closure relations.

By definition,

A = |λ = 1〉 〈λ = 1|
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=
1

2
(−i |1〉+ |2〉)(i 〈1|+ 〈2|)

=
1

2

(
1 −i
i 1

)
Similarly,

B = |λ = −1〉 〈λ = −1|

=
1

2

(
1 i
−i 1

)
We can show that they are orthonormal by multiplying the two together, AB = BA = 0. We

can show completeness by adding them together, A+B = I.
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2.3 Kets and Operators

The state space of a certain physical system is three-dimensional. Let {|u1〉 , |u2〉 , |u3〉}
be an orthonormal basis of this space. The kets |ψ0〉 and |ψ1〉 are defined by:

|ψ0〉 =
1√
2
|u1〉+

i

2
|u2〉+

1

2
|u3〉

|ψ1〉 =
1√
3
|u1〉+

i√
3
|u3〉

2.3.1 Normalized Kets

Are these kets normalized?

To tell if these kets are normalized, we need to find the norm. Let’s start with |ψ0〉,

〈ψ0|ψ0〉 =

(
1√
2
〈u1| −

i

2
〈u2|+

1

2
〈u3|

)(
1√
2
|u1〉+

i

2
|u2〉+

1

2
|u3〉

)
Using orthonormality, we can ignore most of these terms,

=
1

2
〈u1|u1〉+

1

4
〈u2|u2〉+

1

4
〈u3|u3〉 = 1

Since we have an orthonormal basis, we can see that |ψ0〉 is normalized. For |ψ1〉,

〈ψ1|ψ1〉 =

(
1√
3
〈u1| −

i√
3
〈u3|

)(
1√
3
|u1〉+

i√
3
|u3〉

)

=
1

3
〈u1|u1〉+

1

3
〈u3|u3〉 =

2

3

|ψ1〉 is not normalized.

2.3.2 Projection Operators

Calculate the matrices ρ0 and ρ1 representing, in the {|u1〉 , |u2〉 , |u3〉} basis, the projec-
tion operators onto the state |ψ0〉 and onto the state |ψ1〉. Verify that these matrices
are Hermitian.

We define the projection operator as

ρ0 = |ψ0〉 〈ψ0|
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=

(
1√
2
|u1〉+

i

2
|u2〉+

1

2
|u3〉

)(
1√
2
〈u1| −

i

2
〈u2|+

1

2
〈u3|

)
We can define our orthonormal basis however we want, but for ease, let’s use

|u1〉 =

1
0
0

 ; |u2〉 =

0
1
0

 ; |u3〉 =

0
0
1


In this basis,

ρ0 =



1

2
− i

2
√

2

1

2
√

2

i

2
√

2

1

4

i

4

1

2
√

2
− i

4

i

4


We use the Hermitian condition (1.8) to show that ρ0 is Hermitian.
Similarly,

ρ1 = |ψ1〉 〈ψ1|

=

(
1√
3
|u1〉+

i√
3
|u3〉

)(
1√
3
〈u1| −

i√
3
〈u3|

)

=



1

3
0 − i

3

0 0 0

i

3
0

1

3


Again, we see that ρ1 is Hermitian.
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2.4 Operators

Let K be the operator defined by K = |φ〉 〈ψ|, where |φ〉 and |ψ〉 are two vectors of the
state space.

2.4.1 Hermitian

Under what condition is K Hermitian?

Following the Hermitian condition (1.8),

K = K†

|φ〉 〈ψ| = |ψ〉 〈φ|

One possible way for K to be Hermitian is for |φ〉 = |ψ〉.

2.4.2 Projection Operator

Calculate K2. Under what condition is K a projector?

K2 = |φ〉 〈ψ|φ〉 〈ψ|

K is a projector if |φ〉 = |ψ〉.

2.4.3 More Projectors

Show that K can always be written in the form K = λP1P2 where λ is a constant to be
calculated and P1 and P2 are projectors.

We set

P1 = |φ〉 〈φ|

P2 = |ψ〉 〈ψ|

Now if we multiply them together,

P1P2 = |φ〉 〈φ|ψ〉 〈ψ|
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The middle part is just a scalar, so to get rid of that, we need to multiply by some constant,

λ =
1

〈φ|ψ〉

Combining all of this,

λP1P2 = |φ〉 〈ψ| = K
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2.5 Orthogonal Projector

Let P1 be the orthogonal projector onto the subspace E1, P2 the orthogonal projector
onto the subspace E2. Show that, for the product P1P2 to be an orthogonal projector
as well, it is necessary and sufficient that P1 and P2 commute. In this case, what is the
subspace onto which P1P2 projects?

Let’s say that

P1 = |φ〉 〈φ|

P2 = |ψ〉 〈ψ|

where |φ〉 and |ψ〉 are in E1 and E2 respectively. If P1 and P2 commute, this implies

P1P2 = P2P1

|φ〉 〈φ|ψ〉 〈ψ| = |ψ〉 〈ψ|φ〉 〈φ|

What this implies,

〈φ|ψ〉 = 〈ψ|φ〉

We imagine that if we act P1P2 on either |φ〉 or |ψ〉, we get the same thing. P1P2 projects onto
the overlap of E1 and E2.
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2.6 Pauli Matrices

The σx matrix is defined by

σx =

(
0 1
1 0

)
Prove the relation:

exp(iασx) = I cos(α) + iσx sin(α)

where I is the 2×2 unit matrix.

We can expand the left-side using a Taylor expansion,

exp(iασx) = I + iασx +
1

2
(iα)2σ2

x + ...

=

(
1 0
0 1

)
+ iα

(
0 1
1 0

)
− α2

2

(
0 1
1 0

)(
0 1
1 0

)
+ ...

=


1− α2

2
+ ... iα+ ...

iα+ ... 1− α2

2
+ ...


Similarly, if we expand the right side,

I cos(α) =


1− α2

2
+ ... 0

0 1− α2

2



iσx sin(α) =

(
0 iα+ ...

iα+ ... 0

)
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2.7 Pauli Matrices

Establish for the σy matrix given in exercise 2, a relation analogous to the one proved
for σx in the preceding exercise. Generalize for all matrices of the form:

σu = λσx + µσy

with:

λ2 + µ2 = 1

Calculate the matrices representing exp(2iσx), (exp(iσx))2 and exp(i(σx+σy)). Is exp(2iσx)
equal to (exp(iσx))2? exp(i(σx + σy)) to exp(iσx) exp(iσy)?

Following the methodology in question 6, we expand the exponential,

exp(iασy) = I + iασy +
1

2
(iα)2σ2

y + ...

=

1− α2

2
+ ... α+ ...

−α 1− α2

2
+ ...


We can convince ourselves that this is

exp(iασy) = I cos(α) + iσy sin(α)

For σu, we can’t use the normal rules of exponential multiplication (which answers the last part
of this question). Expanding,

exp(iα(λσx + µσy)) = I + iα(λσx + µσy) +
1

2
(iα)2(λ2σ2

x + µ2σ2
y + λµσxσy + λµσyσx)

= I cos(α) + iσx sin(αλ) + iσy sin(αµ)

Using the relation found in question 6,

exp(2iσx) = I cos(2) + iσx sin(2)

(exp(iσx))2 = I(cos2(1)− sin2(1)) + 2iσx cos(1) sin(1)

These are equal by using angle addition formulas.
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2.8 One dimensional Particle

Consider the Hamiltonian H of a particle in a one-dimensional problem defined by:

H =
1

2m
P 2 + V (X)

where X and P are the operators defined in ... and which satisfy the relation: [X,P ] =
ih̄. The eigenvectors of H are denoted by |φn〉: H |φn〉 = E |φn〉, where n is a discrete
index.

2.8.1 Expectation Value

Show that

〈φn|P |φn′〉 = α 〈φn|X|φn′〉

where α is a coefficient which depends on the difference between En and En′ . Calculate
α (hint: consider the commutator [X,H ]).

We can use Dirac’s rule to find the commutator of [X,H ],

[X,H ] = ih̄[X,H ]cl

[X,H ]cl =
1

m
P

[X,H ] =
ih̄

m
P

A little bit of rearranging,

P =
m

ih̄
[X,H ]

Inserting this in,

m

ih̄
〈φn|[X,H ]|φn′〉

=
m

ih̄
(〈φn|XH |φn′〉 − 〈φn′ |H X|φn〉)

Using the eigenvectors of H ,

=
m

ih̄
(En′ − En) 〈φn|X|φn′〉
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2.8.2 Closure

From this, deduce, using the closure relation, the equation:

∑
n′

(En − En′)2| 〈φn|X|φn′〉 |2 =
h̄2

m2
〈φn|P 2|φn〉

We can get this by squaring both sides.



2.9. HAMILTONIAN 21

2.9 Hamiltonian

Let H be the Hamiltonian operator of a physical system. Denote by |φn〉 the eigen-
vectors of H , with eigenvalues En:

H |φn〉 = En |φn〉

2.9.1 Commutator

For an arbitrary operator A, prove the relation:

〈φn|[A,H ]|φn〉 = 0

We can expand the commutator,

〈φn|AH |φn〉 − 〈φn|H A|φn〉

Using the eigenvalue relation,

= En 〈φn|A|φn〉 − En 〈φn|A|φn〉 = 0

2.9.2 One-Dimensional Particle

Consider a one-dimensional problem, where the physical system is a particle of mass
m and potential energy V (X). In this case, H is written:

H =
1

2m
P 2 + V (X)

In terms of P , X, and V (X), find the commutators: [H , P ], [H , X], and [H , XP ]

We want to use Dirac’s rule,

[H , P ] = ih̄[H , P ]cl

= ih̄

(
∂H

∂X

∂P

∂P
− ∂H

∂P

∂P

∂X

)
Only the first term survives,

= ih̄
∂V

∂X
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Similarly,

[H , X] = − ih̄
m
P

[H , XP ] = ih̄

(
X
∂V

∂X
− P 2

m

)
Show that the matrix element 〈φn|P |φn〉 (which we shall interpret in chapter III as the
mean value of the momentum in the state |φn〉) is zero

Using the result shown previously,

P = −m
ih̄

[H , X]

Inserting this in,

〈φn|P |φn〉 =
m

ih̄
〈φn|[X,H |φn〉

which we showed in part a to be zero.

Establish a relation between Ek = 〈φn|
P 2

2m
|φn〉 (the mean value of the kinetic energy

in the state |φn〉) and 〈φn|X
dV

dX
|φn〉. Since the mean value of the potential energy in

the state |φn〉 is 〈φn|V (X)|φn〉, how is it related to the mean value of the kinetic energy
when:

V (X) = V0X
λ

(λ = 2, 4, 6, ...; V0 > 0)?

We recognize these as the components of [H , XP ],

〈φn|[H , XP ]|φn〉 = ih̄

(
〈φn|X

dV

dX
|φn〉 − 〈φn|

P 2

m
|φn〉

)
We know the left side is equal to 0 from part a, so

〈φn|
P 2

2m
|φn〉 =

1

2
〈φn|X

dV

dX
|φn〉

If the potential is some polynomial,

X
dV

dX
= λV
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〈φn|
P 2

2m
|φn〉 =

1

2
λ 〈φn|V (X)|φn〉

Since λ is constrained to be even, the kinetic energy is some integer multiple of the potential
energy.
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2.10 Transformation Function

Using the relation 〈x|p〉 = (2πh̄)−1/2 exp(ipx/h̄), find the expressions 〈x|XP |ψ〉 and 〈x|PX|ψ〉
in terms of ψ(x). Can these results be found directly in using the fact that in the {|x〉}

representation, P acts like
h̄

i

d

dx
?

We know that |x〉 is an eigenvector of X with eigenvalue x, so let’s get rid of that first,

〈x|XP |ψ〉 = x 〈x|P |ψ〉

We can now insert identity twice,

= x 〈x|p〉 〈p|P |ψ〉

= x 〈x|p〉 p 〈p|x〉 〈x|ψ〉

We know that when we multiply 〈x|p〉 〈p|x〉, we should get unity,

= xpψ(x) = −ih̄xdψ(x)

dx

If we treat p as −ih̄ d

dx
, we get the same thing as if P =

h̄

i

d

dx
.

Similarly,

〈x|PX|ψ〉 = 〈x|p〉 〈p|PX|x〉 〈x|ψ〉

= 〈x|p〉 px 〈x|p〉ψ(x)

pxψ(x)

= −ih̄d(xψ(x))

dx
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2.11 Commuting Observable and CSCO’s

Consider a physical system whose three-dimensional state space is spanned by the
orthonormal basis by the three kets |u1〉, |u2〉, |u3〉. In the basis of these three vectors,
taken in this order , the two operators H and B are defined by:

H = h̄ω0

1 0 0
0 −1 0
0 0 −1

 ; B = b

1 0 0
0 0 1
0 1 0


where ω0 and b are real constants.

2.11.1 Hermitian

Are H and B Hermitian?

By observation, yes.

2.11.2 Common eigenbasis

Show that H and B commute. Give a basis of eigenvectors common to H and B.

Let’s start by solving the characteristic equation for H,

detH − λI = det

1− λ 0 0
0 −1− λ 0
0 0 −1− λ

 = 0

The eigenvalues are λ = ±1. We have a degeneracy for λ = −1, but we can find the easiest
eigenvectors for the other eigenvalues,

|1〉 =

1
0
0

 ; |−1〉 =
1√
2

0
1
1


Now we know that we want this basis to be orthonormal, so to fulfill this condition,

|0〉 =
1√
2

 0
1
−1


2.11.3 CSCO

Of the set of operators: {H}, {B}, {H,B}, {H2, B}, which form a CSCO?
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2.12 Spin Operators

In the same state space as that of the preceding exercise, consider two operators Lz
and S defined by: {

Lz |u1〉 = |u1〉 , Lz |u2〉 = 0, Lz |u3〉 = − |u3〉
S |u1〉 = |u3〉 , S |u2〉 = |u2〉 , S |u3〉 = |u1〉

2.12.1 Matrix representation

Write the matrices which represent, in the {|u1〉 , |u2〉 , |u3〉} basis, the operators Lz, L
2
z,

S, S2. Are these operators observable?

From observation,

Lz =

1 0 0
0 0 0
0 0 −1



S =

0 0 1
0 1 0
1 0 0


From this, we can show

L2
z =

1 0 0
0 0 0
0 0 1



S2 =

1 0 0
0 1 0
0 0 1


These are all observables.

2.12.2 Commutator

Give the form of the most general matrix which represents an operator which com-
mutes with Lz. Same question for L2

z, then for S2.

Let’s say we have some matrix,

M =

m11 m12 m13

m21 m22 m23

m31 m32 m33


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Acting Lz on it,

LzM =

 m11 m12 m13

0 0 0
−m31 −m32 −m33



MLz =

m11 0 −m13

0 0 0
m31 0 −m33

 (2.12.1)

In order for these to commute, only m11 and m33 survive,

M =

m11 0 0
0 0 0
0 0 m33


We can repeat the process for L2

z,

L2
zM =

m11 0 m13

0 0 0
m31 0 m33



ML2
z =

m11 0 m13

0 0 0
m31 0 m33


All four corners survive, and we can add a term in the middle,

M =

m11 0 m13

0 m22 0
m31 0 m33


Since S2 is the identity matrix, any matrix will commute with it.

2.12.3 CSCO

Do L2
z and S form a CSCO? Give a basis of common eigenvectors.

Solving the characteristic equation for L2
z since S has a degeneracy,

det(L2
z − λI) = det

1− λ 0 0
0 −λ 0
0 0 1− λ


Our eigenvalues are λ = 0, 1. We have a degeneracy, so our eigenvectors are

|1〉 =
1√
2

1
0
1

 ; |0〉 =

0
1
0


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Now by orthonormality,

|a〉 =
1√
2

 1
0
−1


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