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Chapter 2

The Mathematical Tools of
Quantum Mechanics

2.1 Hermitian Operator

|¢pn) are the eigenstates of a Hermitian operator H (H is, for example, the Hamilto-
nian of an arbitrary physical system). Assume that the states |¢,) form a discrete
orthonormal basis. The operator U(m,n) is defined by:

U(m7 n) = ‘¢m> <¢n|

2.1.1 Adjoint
Calculate the adjoint UT(m,n) of U(m,n).

From the definition of the adjoint,

UT(mv”) = |pn) (Pl

2.1.2 Commutator

Calculate the commutator [H,U(m,n)]

Let’s act the commutator on a vector (looking ahead, we’ll set the vector as |¢y,)),

[H, U] [6n)
H |¢m) (¢n|on) = |6m) (on|H|on)

H |¢m> —n |¢m> = (m - n) |¢m>
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The commutator is
[H7 U(m7n)] =m-="n

2.1.3 Delta Function

Prove the relation:

U(m, n)UT (p,q) = dnqU(m,p)

Writing this out,
U(m7n)UT(pa Q) = ‘¢m> <¢n|¢q> <¢p‘

The middle section dies unless n = ¢, leaving us the delta function,

= 0ng |dm) (dp| = IngU(m, p) (2.1.1)

2.1.4 Trace
Calculate Tr{U(m,n)}, the trace of the operator U(m,n).

By definition, the trace is given by

Tr(U) =) (a|Ula)

[e3%

where « are the basis states.

- Z <O‘|¢m> <¢n|a>

We can convince ourselves that one part must be equal to zero at all times unless m = n,

TrU) = dmn

2.1.5 Multiplying Operators

Let A be an operator, with matrix elements A,,,, = (¢,,|A|¢,). Prove the relation:

A= Z ApnU(m,n)

mn

Let’s start by acting A on |¢,). We only need to sum over m in this case since we can use
orthonormality for n. Writing out the sum,

A ‘¢n> = Z <¢m|A|¢n> |¢m> <¢n|¢n>

m
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A, is a scalar, so we can move that around for free,

- Z |¢m> <¢m‘A|¢n>
m
When we perform the sum, the first part becomes identity, so we can remove it,
=A |¢n>

2.1.6 More Trace
Show that A,, = Tr{AU(p,q)}.

We'll start with the right side. We can write the part inside the trace using the relation we
found in part (e),

m,n

Using the relation found in part (c),

= Z ApnbngU(m, p)

m,n

Summing over n, we pick out n = q. We can then take the trace and use the result from part
(d) to get a value for the trace of our operator U(m, p),

Tr{AU (p. @)} = AmgOmp

Again, summing over m picks out the m = p value,

= qu
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2.2 Pauli Matrices

In a two-dimensional vector space, consider the operator whose matrix, in an orthonor-
mal basis {|1),|2)}, is written:
o — 0 —i
Yo \i 0

Is 0, Hermitian? Calculate its eigenvalues and eigenvectors (giving their normalized
expansion in terms of the {|1),|2)} basis).

2.2.1 Eigenvalues

oy is Hermitian. To find the eigenvalues, we need to solve the characteristic equation,

det(a, — AI) = det (‘ZA —;)

=X2_-1=0

Our eigenvalues are A\ = +1. We can show that the eigenvectors are

hoi= gl

In the |1), |2) basis,

A=1) = %(—mw 2))
A= 1) = %mm 2))

2.2.2 Projection Operator

Calculate the matrices which represent the projectors onto these eigenvectors. Then
verify that they satisfy the orthogonality and closure relations.

By definition,
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— %(4 1) +12)) (@ (1] + (2])

Similarly,

_ L
To2\—i 1

We can show that they are orthonormal by multiplying the two together, AB = BA = 0. We
can show completeness by adding them together, A + B = I.
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2.3 Kets and Operators

The state space of a certain physical system is three-dimensional. Let {|u1),|us), |us)}
be an orthonormal basis of this space. The kets |¢) and |i;) are defined by:

) = < fun) + 5 ) + 5 )

1 7
Y1) = 7 lu1) + 7 |us)

2.3.1 Normalized Kets

Are these kets normalized?

To tell if these kets are normalized, we need to find the norm. Let’s start with [¢g),

1 i 1 1 i 1
(toltho) = (\/5 (w| = 3 (uz| + B <U3|) <\/§ lu1) + 3 luz) + 5 |U3>)
Using orthonormality, we can ignore most of these terms,

1 1 1
=5 (u|ur) + 1 (uzuz) + 1 (uslug) =1

Since we have an orthonormal basis, we can see that |¢)g) is normalized. For |i1),

(onlin) =z tual = = () (g o) + T )

1 1 2
=3 (ur|ur) + 3 (uslug) = 3

[4)1) is not normalized.

2.3.2 Projection Operators

Calculate the matrices py and p; representing, in the {|u1),|us),|us)} basis, the projec-
tion operators onto the state |i)y) and onto the state |¢)1). Verify that these matrices

are Hermitian.

We define the projection operator as

po = |1bo) (¢ol
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1 ) 1 1 ) 1
— () + g + 5 ) ) (5 = 5 unl 4 )
We can define our orthonormal basis however we want, but for ease, let’s use
1 0 0
lui) = |0]; Ju2)=[1|; [uz)= |0
0 0 1

In this basis,

1L 1 7
2 272 2V2
| 1 :
B :

L24/2 4 4 |

We use the Hermitian condition (1.8]) to show that pg is Hermitian.
Similarly,

p1 = 1) (]

(o) G- )

1 i
20 —-
3 3
=10 0 O
i 1
20 =
3 3

Again, we see that p; is Hermitian.
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2.4 Operators

Let K be the operator defined by K = |¢) (|, where |¢) and |¢) are two vectors of the
state space.

2.4.1 Hermitian

Under what condition is K Hermitian?

Following the Hermitian condition (1.8)),

K=K
|6) (4] = 1) (9]
One possible way for K to be Hermitian is for |¢) = |1)).

2.4.2 Projection Operator

Calculate K2. Under what condition is K a projector?

K* = |¢) (]o) (¢
K is a projector if |¢) = |¢).

2.4.3 More Projectors

Show that K can always be written in the form K = AP, P, where ) is a constant to be
calculated and P, and P, are projectors.

We set

Py =¢) (4]

Py = |4) (4]

Now if we multiply them together,

PPy = [9) (o) (Y|
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The middle part is just a scalar, so to get rid of that, we need to multiply by some constant,

Combining all of this,

APP, = |¢> <7/}| =K
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2.5 Orthogonal Projector

Let P, be the orthogonal projector onto the subspace &1, P, the orthogonal projector
onto the subspace &. Show that, for the product P, P, to be an orthogonal projector
as well, it is necessary and sufficient that P; and P, commute. In this case, what is the

subspace onto which P; P, projects?

Let’s say that
Py = [¢) (¢]

Py =) (¥
where |¢) and |¢) are in & and & respectively. If P and P, commute, this implies

PP, = PP

|9) (DY) (V] = [v) (¥]9) (4]
What this implies,
(¢lv) = (¥]9)

We imagine that if we act Py P, on either |¢) or |[¢), we get the same thing. P; P, projects onto
the overlap of & and &.
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2.6 Pauli Matrices

The o0, matrix is defined by
(0 1
%=1 o

exp(iao,) = I cos(a) + io, sin(a)

Prove the relation:

where [ is the 2x2 unit matrix.

17

We can expand the left-side using a Taylor expansion,

1
exp(iaoy) = I + iao, + §(ia)203: + ...

() D50 D Y-

1-— ? + 16} +
+ ey
i+ . - —
2
Similarly, if we expand the right side,
2
o
1——+.. 0
5 +
Icos(a) =
2
e’
0 1——
2
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2.7 Pauli Matrices

Establish for the o, matrix given in exercise 2, a relation analogous to the one proved
for o, in the preceding exercise. Generalize for all matrices of the form:

Oy = A0z + Loy
with:
N4+ut=1

Calculate the matrices representing exp(2io;), (exp(io,))? and exp(i(o,+0y)). Is exp(2io,)
equal to (exp(io,))?? exp(i(o, + 0y)) to exp(io,)exp(io,)?

Following the methodology in question 6, we expand the exponential,

1
exp(iaoy) = I +icoy + f(ia)zai + ...

2
2
17%+.. a4+ ..
_ 1 a2+
@ 2

We can convince ourselves that this is
exp(iaoy) = I cos(a) + oy sin(a)

For o, we can’t use the normal rules of exponential multiplication (which answers the last part
of this question). Expanding,

1
exp(ia(Aoy + poy)) = I +ic( Aoy + poy) + i(ia)2()\2ai + ,u20§ + Aoz 0y + A0y )

= I cos(a) + o, sin(al) + ioy sin(ap)
Using the relation found in question 6,

exp(2io,) = I cos(2) + io, sin(2)

(exp(io,))? = I(cos?(1) — sin(1)) + 2io, cos(1) sin(1)

These are equal by using angle addition formulas.
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2.8 One dimensional Particle

Consider the Hamiltonian J# of a particle in a one-dimensional problem defined by:

1

%:2771

P?+V(X)

where X and P are the operators defined in ... and which satisfy the relation: [X, P] =
ih. The eigenvectors of . are denoted by |¢,): H |p,) = E |¢p,), where n is a discrete
index.

2.8.1 Expectation Value
Show that

where « is a coefficient which depends on the difference between FE,, and F,.. Calculate
« (hint: consider the commutator [X, 7).

We can use Dirac’s rule to find the commutator of [X, 577,

(X, ] =ih[X, H)a

1
(X, ) =—P
m
X, ="p
m
A little bit of rearranging,
m
P=—XJ
X, ]

Inserting this in,

m
Using the eigenvectors of ¢,

m
= E(En/ - E,) <¢n|X|¢n'>
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2.8.2 Closure

From this, deduce, using the closure relation, the equation:

h2
> (Bn = Ep [ {6n|X|én) [P = — (60 P|6n)

n’

We can get this by squaring both sides.
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2.9 Hamiltonian

Let # be the Hamiltonian operator of a physical system. Denote by |¢,) the eigen-
vectors of /7, with eigenvalues FE,;:

2.9.1 Commutator

For an arbitrary operator A, prove the relation:

<¢TL|[A7%]|¢TI> =0

We can expand the commutator,

Using the eigenvalue relation,

=E, <¢n|A|¢n> - E, <¢n|A|¢n> =0

2.9.2 One-Dimensional Particle

Consider a one-dimensional problem, where the physical system is a particle of mass
m and potential energy V(X). In this case, J# is written:

1
2m

H = —P?*+V(X)

In terms of P, X, and V(X), find the commutators: [, P|, [, X], and [, X P|

We want to use Dirac’s rule,

[#7, P] = ih[2, Py

(2200 _oxor
a 0X OP  OP 90X

Only the first term survives,
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Similarly,
1, X] = " p
m
. oV  P?

Show that the matrix element (¢,|P|¢,) (which we shall interpret in chapter IIT as the
mean value of the momentum in the state |¢,)) is zero

Using the result shown previously,

m
P——Z_—h[%,X]

Inserting this in,

which we showed in part a to be zero.

P2
Establish a relation between Ej = (¢n|2—|¢n> (the mean value of the kinetic energy
m

d
in the state |¢,)) and <¢n|Xd—)‘;\gz5">. Since the mean value of the potential energy in

the state |¢,) is (¢n|V(X)|¢n), how is it related to the mean value of the kinetic energy
when:

V(X) = VpX?

(A=2,4,6,..; Vo > 0)?

We recognize these as the components of [, X P],

@nllo XPY6) = i (16,1X T l0n) = (0nl - 161)

We know the left side is equal to 0 from part a, so

1

P2 av

If the potential is some polynomial,
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2
(6l 160) = 57 (6ulV (X)l6n)

Since A is constrained to be even, the kinetic energy is some integer multiple of the potential
energy.
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2.10 Transformation Function
Using the relation (z|p) = (27h) /2 exp(ipz/h), find the expressions (x| X P|¢y) and (x| PX |¢))
in terms of ¢(z). Can these results be found directly in using the fact that in the {|z)}

representation, P acts like ——7
1 dx

We know that |z) is an eigenvector of X with eigenvalue x, so let’s get rid of that first,
([ X Ply) =z (z[P|y)
We can now insert identity twice,

=z (z|p) (p|Pl)

=z (z|p) p (plz) (z|¢))
We know that when we multiply (z|p) (p|x), we should get unity,

= apy(z) = —ihxdlfl;x)

d h d
If we treat p as —ih—, we get the same thing as if P = ——.
dx i dx

Similarly,

(x| PX|tp) = (z|p) (p|PX|z) (x|¢)
= (z[p) px (z|p) ¥ (z)
prip(x)

Cd(a(a)
=
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2.11 Commuting Observable and CSCQO'’s

Consider a physical system whose three-dimensional state space is spanned by the
orthonormal basis by the three kets |u1), |u2), |us). In the basis of these three vectors,
taken in this order , the two operators H and B are defined by:

1 0 o 1 00
H=hw|0 -1 0]:; B=b[0 0 1
0 0 -1 01 0

where wy and b are real constants.

2.11.1 Hermitian
Are H and B Hermitian?

By observation, yes.

2.11.2 Common eigenbasis

Show that H and B commute. Give a basis of eigenvectors common to H and B.

Let’s start by solving the characteristic equation for H,

1-A 0 0
det H — A\ = det 0 —-1-A 0 =0
0 0 —-1-A
The eigenvalues are A = +1. We have a degeneracy for A = —1, but we can find the easiest
eigenvectors for the other eigenvalues,
1 1 0
= o Fy=-z1
0 V2[4

Now we know that we want this basis to be orthonormal, so to fulfill this condition,

0)= =

2.11.3 CSCO
Of the set of operators: {H}, {B}, {H, B}, {H?, B}, which form a CSCO?
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2.12 Spin Operators

In the same state space as that of the preceding exercise, consider two operators L,
and S defined by:

L.lur) = [u1), L:lug) =0, L, |uz) = —|us)
Slur) = ug), Slua) = |u2), Sluz) = |u1)
2.12.1 Matrix representation

Write the matrices which represent, in the {|u;), |u2),|us)} basis, the operators L., L2,
S, S2. Are these operators observable?

From observation,

wn

Il
— _
= o O
S = O
o O =
N——————

From this, we can show

jan)}
—
(@)

These are all observables.

2.12.2 Commutator

Give the form of the most general matrix which

represents an operator which com-
mutes with L,. Same question for L2, then for S2.

Let’s say we have some matrix,

mip Miz M3
M= | ma1 ma2 Mma3
m31 MmM32 133
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Acting L, on it,

mii1 mi2 mis
L.M = 0 0 0
—m31 —Mm32 —MN33

my1 0 —mgs
ML.=| 0 0 o0 (2.12.1)
m3; 0 —mg33

In order for these to commute, only mi; and mgs survive,

mi1 0 0
M = 0 0 0
0 0 mss

We can repeat the process for L2,

mi1r 0 mg3
L*°M=[0 0 o0
m31 0 ms3

mir 0 mas
ML2=[ 0 0 0
m31 0 ma33

All four corners survive, and we can add a term in the middle,

myp 0 ma3
M = 0 moo 0
m31 0 ma33

Since S? is the identity matrix, any matrix will commute with it.

2.12.3 CSCO

Do L? and S form a CSCO? Give a basis of common eigenvectors.

Solving the characteristic equation for L? since S has a degeneracy,

1I-X 0 0
det(L2 —N)=det| 0 -\ 0

L 0
1) =—=(0]; [0)=|1
V2 |4 0
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Now by orthonormality,
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