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Chapter 1

Survey of the Elemntary Particles

1.1 Kinetic Energy Equation of Motion

Show that for a single particle with constant mass the equation of motion implies the
following differential equation for the kinetic energy:

dT

dt
= ~F · ~v

while if the mass varies with time the corresponding equation is

d(mT )

dt
= ~F · ~p

We’ll start with the definition of kinetic energy (1.9). If we take the time derivative, we only
have to derivatify the velocity terms,

T =
1

2
m~v · ~v

dT

dt
=
m

2
2~̇v · ~v = m~a · ~v = ~F · ~v

If however our mass is time dependent,

d(mT )

dt
=

d

dt

[
1

2
(m~v)2

]
=
d(m~v)

dt
· (m~v) = ~F · ~p
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6 CHAPTER 1. SURVEY OF THE ELEMNTARY PARTICLES

1.2 Center of Mass

Prove that the magnitude R of the position vector for the center of mass from an
arbitrary origin is given by the equation

M2R2 = M
∑
i

mir
2
i −

1

2

∑
i 6=j

mimjr
2
ij

We’ll start with the definition of the center of mass (1.12).

M ~R =
∑
i

mi~ri

M2R2 =
∑
i,j

mimj~ri · ~rj

Let’s look at the distance between two arbitrary points,

r2ij = (~ri − ~rj)2

= r2i + r2j − 2~ri · ~rj

Substituting this back in,

M2R2 =
1

2

∑
ij

mimjr
2
i +

1

2

∑
ij

mimjr
2
j −

1

2

∑
ij

mimjr
2
ij

We note that the first two terms are identical since they will eventually all look at the same
points.

M2R2 = M
∑
i

mir
2
i −

1

2

∑
i 6=j

mimjr
2
ij



1.3. NEWTON’S THIRD LAW 7

1.3 Newton’s Third Law

Suppose a system of two particles is known to obey the equations of motion,

M
d2 ~R

dt2
=
∑
i

~F
(e)
i = ~F (e)

d~L

dt
= ~N (e)

From the equations of the motion of the individual particles show that the internal
forces between particles satisfy both the weak and the strong laws of action and reac-
tion. The argument may be generalized to a system with arbitrary number of particles,
thus proving the converse of the arguments leading to the equations of motion.

Say the two particles are at rest,

M · 0 = m1a1 +m2a2

m1a1 = −m2a2

~F
(e)
1 = −~F (e)
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8 CHAPTER 1. SURVEY OF THE ELEMNTARY PARTICLES

1.4 Rolling Disk Constraint

The equations of constraint for the rolling disk,{
dx− a sin(θ)dφ = 0

dy + a cos(θ)dφ = 0

are special cases of general linear differential equations of constraint of the form

n∑
i=1

gi(x1, ...xn)dxi = 0

A constraint condition of this type is holonomic only if an integrating function f(x1, ...xn
can be found that turns it into an exact differential. Clearly the function must be such
that

∂(fgi)

∂xj
=
∂(fgj)

∂xi

for all i 6= j. Show that no such integrating factor can be found for either of constraint
equations.

Let’s start with the first constraint equation. We can write the gi,
gx = 1

gθ = 0

gφ = −a sin(θ)

∂f

∂φ
=
∂ − af sin(θ)

∂x

Using separation of variables, we expect our solution to take the form f = X(x)Q(φ). Substi-
tuting this in,

Q′X = −a sin(θ)X ′Q

There is no solution for Q and X that satisfy this equation. If we look at gθ,

∂f

dφ
= 0

The only solution is the trivial one. Similarly, we can follow the same steps for the second
constraint equation.
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1.5 Constraint Equations

Two wheels of radius a are mounted on the ends of a common axle of length b such
that the wheels rotate independently. The whole combination rolls without slipping
on a plane. Show that there are two nonholonomic equations of constraint

cos(θ)dx+ sin(θ)dy = 0

sin(θ)dx− cos(θ)dy =
1

2
a(dφ+ dφ′)

(where θ, φ, and φ′ have meanings similar to those in the problem of a single vertical
disk, and (x, y) are the coordinates of a point on the axle midway between the two
wheels) and one holonomic equation of constraint,

θ = C − a

b
(φ− φ′)

where C is a constant.

Let’s call one wheel the unprimed system and the other, the primed system. Following the
no-slipping condition, 

v = aφ̇

ẋ = v sin(θ)

ẏ = −v cos(θ)
v′ = aφ̇′

ẋ′ = v′ sin(θ)

ẏ′ = −v′ cos(θ)

Let’s start by looking at the nonholonomic constraints,

cos(θ)dx+ sin(θ)dy = 0

v cos(θ) sin(θ)− v sin(θ) cos(θ) = 0

sin(θ)dx− cos(θ)dy = v sin2(θ) + v cos2(θ) =
1

2
(v + v′) =

1

2
a(dφ+ dφ′)

For the holonomic constraint,

φ− φ′ = r − r′

θ = C − a

b
(r − r′)

θ = C − a

b
(φ− φ′)
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1.6 Non-Holonomic Constraint

A particle moves int eh xy plane under the constraint that its velocity vector is always
directed towards a point on the x axis whose abscissa is some given function of time
f(t). Show that for f(t) differentiable, but otherwise arbitrary, the constraint is non-
holonomic.

ydx− [f(t)− x]dy = 0

Since f(t) is non-holonomic, cannot be solved.
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1.11. CONSERVATIVE FORCES 15

1.11 Conservative Forces

Check whether the force ~F = yzî+ zxĵ + xyk̂ is conservative or not.

We want to show that the potential energy obeys equation (1.10). That is, we need to find some
V such that 

∂

∂x
V = −yz

∂

∂y
V = −zx

∂

∂z
V = −xy

V = −xyz

Because we can find a potential energy that solves for the given force, the force is conservative.
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1.12 Satellite Orbital Motion

Compute the orbital period and orbital angular velocity of a satellite revolving around
the Earth at an altitude of 720km.

From undergraduate mechanics, we remember,

F =
mv2

r
=
mω2r2

r

ma = mω2r

ω2 =
a

r
=

9.83 m/s2

6.72× 106 m

ω = 1.2× 10−3 s−1

The orbital period is given by T = 2πω,

T = 7.5× 10−3 s−1
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1.13 Rocket Propulsion

Rockets are propelled by the momentum reaction of the exhaust gases expelled from
the tail. Since these gases arise from the reaction of the fuels carried in the rocket, the
mass of the rocket is not constant, but decreases as the fuel is expended. Show that the
equation of motion for a rocket projected vertically upward in a uniform gravitational
field, neglecting atmospheric friction, is

m
dv

dt
= −v′ dm

dt
−mg

where m is the mass of the rocket and v′ is the velocity of the escaping gases relative to
the rocket. Integrate this equation to obtain v as a function of m, assuming a constant
time rate of loss of mass. Show, for a rocket starting initially from rest, with v′ equal
to 2.1 km/s and a mass loss per second equal to 1/60th of the initial mass, that in
order to reach the escape velocity the ratio of the weight of the fuel to the weight of
the empty rocket must be almost 300!

We want to use conservation of linear momentum. The change in momentum of the rocket is
equal to the change in momentum of the gases plus the momentum due to gravitational force,

m dv = −v′ dm−mg dt

dv = −v′ dm
m
− g dt

Integrating from initial to final mass of the rocket,

vf − v0 = −v′ ln(m)|mf
m0 − gt = −v′ ln

(
mf

m0

)
− gt

Looking up the escape velocity (11.2 km/s) and setting the initial mass m0 to the mass of the
rocket plus mass of the fuel, m+ms (s stands for sugar),

ve = −v′ ln
(

m

m+ms

)
− 60g

m

ms
= 276
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1.14 Generalized Coordinates

Two points of mass m are joined by a rigid weightless rod of length l, the center of
which is constrained to move on a circle of radius a. Express the kinetic energy in
generalized coordinates.

Figure 1.1: Generalized
Coordinates

For this problem, we have three degrees of freedom. The rod provides
one (θ) while the two masses have two (φ and σ) as seen in figure (1.1).
From this, we can define the two masses as

~x1 =

(
a cos(θ) +

l

2
cos(φ) sin(σ), a sin(θ) +

l

2
cos(φ) cos(σ),

l

2
sin(σ)

)

~x2 =

(
a cos(θ)− l

2
cos(φ) sin(σ), a sin(θ)− l

2
cos(φ) cos(σ), − l

2
sin(σ)

)
The kinetic energy is

T =
1

2
m(ẋ21 + ẋ22)

Let’s find the component pieces. First, we take the time derivative of the mass positions,

~̇x1 =
(
− aθ̇ sin(θ)− lθ̇

2
sin(θ) sin(σ) +

lσ̇

2
cos(φ) cos(σ),

aθ̇ cos(θ)− lφ̇

2
sin(φ) cos(σ)− lσ̇

2
cos(φ) sin(σ),

lφ̇

2
cos(φ)

)

ẋ21 = a2θ̇2 sin2(θ) +
l2φ̇2

4
sin2(φ) sin2(σ) +

l2σ̇2

4
cos2(φ) cos2(σ)

+a2θ̇2 cos2(θ) +
l2φ̇2

4
sin2(φ) cos2(σ) +

l2σ̇2

4
cos2(φ) sin2(σ) +

l2φ̇2

4
cos2(φ)

= a2θ̇2 +
l2φ̇2

4
sin2(φ) +

l2σ̇2

4
cos2(φ) +

l2φ̇2

4
cos2(φ)

Similarly, for ~x2,

~̇x2 =
(
− aθ̇ sin(θ) +

lθ̇

2
sin(θ) sin(σ)− lσ̇

2
cos(φ) cos(σ),

aθ̇ cos(θ) +
lφ̇

2
sin(φ) cos(σ) +

lσ̇

2
cos(φ) sin(σ),

− lφ̇
2

cos(φ)
)
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ẋ22 = a2θ̇2 +
l2φ̇2

4
sin2(φ) +

l2σ̇2

4
cos2(φ) +

l2φ̇2

4
cos2(φ)

Combining all of this, the total kinetic energy is

T = m

(
a2θ̇2 +

l2φ̇2

4
+
l2σ̇2

4
cos2(φ)

)
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1.17 Conservation of Momentum

A nucleus, originally at rest, decays radioactively by emitting an electron of momen-
tum 1.73MeV/c, and at right angles to the direction of the electron a neutrino with
momentum 1.00MeV/c. (The MeV, million electron volt, is a unit of energy used in
modern physics, equal to 1.60×10−13J. Correspondingly, MeV/c is a unit of linear mo-
mentum equal to 5.34×10−22kg ·m/s.) In what direction does the nucleus recoil? What
is its momentum in MeV/c? If the mass of the residual nucleus is 3.90 × 10−25kg what
is its kinetic energy, in electron volts?

We pretend like these are classical objects, ignoring relativistic and quantum effects. We can
convince ourselves that the momentum of the neutron is given by (−pν ,−pe). From this, we can
see that the direction is given by

θ = tan−1
(
pe
pν

)
= 59.97deg

To find the magnitude of the momentum, we use Pythagorean theorem,

p2n = p2ν + p2e = 2MeV/c

The kinetic energy is given by, assuming a neutron mass of 3.90× 10−25kg,

T =
p2n
mn

= 1.8× 10−5MeV
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1.19 1.19
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1.24 Atwood Machine

Two masses 2kg and 3kg, respectively, are tied to the two ends of a massless, inexten-
sible string passing over a smooth pulley. When the system is released, calculated the
acceleration of the masses and the tension in the string.

Atwood’s machine is a problem that we cannot solve using Lagrangian formalism. By drawing
force diagrams, we see that the force equations are{

−m1g + T = m1a

−m2g + T = −m2a

where I’ve defined m1 = 2kg and m2 = 3kg. Solving, we find

a =
m2g −m1g

m1 +m2

T =
2m1m2g

m1 +m2


