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Chapter 1

Fundamental Concepts

1.1 Commutation Relations
Prove

[AB,CD] = —AC{D, B} + A{C, B}D — C{D, A}B + {C, A} DB

I think it’s easier if we start with the right hand side. Expanding out the anti-commutation

relations (1.10),
—AC(DB+ BD)+ A(CB+ BC)D — C(DA+ AD)B+ (CA+ AC)DB

Distributing and grouping terms,

= —-ACDB — ACBD + ACBD + ABCD — CDABcADB + CADB + ACDB

= ABCD — CDAB = (AB)(CD) — (CD)(AB) = [AB,CD]
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1.2 Pauli Matrices
Suppose a 2 x 2 matrix X (not necessarily Hermitian, nor unitary) is written as
X = ag + o-a

where ag and a; 2 3 are numbers.

1.2.a How are gy and a; (k =1,2,3) related to Tr(X) and Tr(c,X)?
We can take the trace of X,

Tr X = Tr(apl) 4+ Tr(c - @)

By definition, the Pauli matrices (o) are traceless, so re-scaling them by a scalar factor does
nothing to the trace.

Tr(X) = Tr(aol) = 2a9
If we multiply X by one of the Pauli matrices, we should write this out explicitly,
o X = ag0 + a10p01 + a20L02 + a30L03

When we take the trace, the first term will die since that is just one of the Pauli matrices.
Remembering the following relation,

0q0p = 5(11)] + 1€apcTec
we see that for a # b, we get just another Pauli matrix. Thus, only the k term survives,
TI(U}C) = 2ak

Rewriting for convenience,

ag =12 Tr(X)
ar =1/2 Tr(okX)

1.2.b Obtain ay and a;, in terms of the matrix elements X;;

As a reminder, the Pauli matrices are
(0 1\ (0 =i\ (1 0
1=\1 0/ 27 o) 7 o -1

X — ag+as ap —ias
ap +iaz  ap —as



1.2. PAULI MATRICES

Multiplying each Pauli matrix by X, i.e., 01X,

UlX:

0’2X =

O’gX =

Using the results from the previous part,

ag = 1/2

ag = 1/2

asz = 1/2

O'3X

Xo1 Xoo

[ X1 Xa2

-*inl —1X2
X1 X
X1 X9
—Xo1 —Xoo

Tr(X) =12 (X11 + Xo2)

ap =12 Tr(o1 X) =
Tr(ooX) = 12 (—iX21 + i X12)
Tr( )=

12 (Xo1 + X12)

1/2 (Xn - X22)
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1.3 Invariant Determinant

Show that the determinant of a 2 x 2 matrix ¢ - @ is invariant under

o m = o 7N\ L —i7 - N
0-d—0-d =exp 5 G-aexp| —5—

Find ¢} in terms of a; when 7 is in the positive z-direction and interpret your result.

Let’s go ahead and take the determinant of both sides. What really matters is the right side,
so let’s look at that one. We know we can break up the determinant,

det(7 - @') = det <‘3XP <i6 2ﬁ¢>> det(& - @) det <exp <ﬁ2ﬁ¢>>

Each determinant is just a scalar, so we can rearrange them for free,

= det (exp (ﬁ 2n¢)> det <exp <_252"¢>) det( - @)
W)) det( - @)

det(d - @) = det(d - @)

|
(o}
]
=+
/N
@D
i
T
7 N
<.
Qu
ol -
>
<
N———
@D
"
o)
7N
l
ol
3

We now want to find aj,. We set,
i=2=(0,0,1)

Substituting this in and writing out explicitly,

JE—) (Z&z(ﬁ) - = <262¢>
g -a = exp B) g - aexp 5

- <expg¢/2) exp(gi%)) (a1 j_3ia2 al—_aia2> (exp(awh) eXp(O%))

_ (( a (a1 — m2>exp<z¢>>

a1 + iag) exp(—ig) —as

Using the results from question 1.2, with X =ag+ 7 -d

az — as
%:T:O

ay =12 [(a1 + iaz) exp(—ig) + (a1 — iaz) exp(ig)] = a1 cos(¢) + ag sin(@)
ay =1/2 [=i(a1 +iaz) exp(—ip) + i(a; — iaz) exp(ip)] = —ay sin(¢) + az cos(e)
az =1/2 (a3 + a3) = a3

This is rotation about the z-axis.



1.4. BRA-KET ALGEBRA 9

1.4 Bra-Ket Algebra

Using the rules of bra-ket algebra, prove or evaluate the following:

l.4.a Tr(XY)=Tr(YX), where X and Y are operators
See Sakurai 1.7.1.

1.4.b (XY)' =Y'X', where X and Y are operators

Let’s act XY on some ket, |a),

(XY) |a)
In bra-space ,

(o] (XY
Alternatively,

XY a) = X(Y |a))

In dual correspondence ,

(| YTXT
Comparing these two cases,

(XY =yTxt

1.4.c explif(A)] =? in ket-bra form, where A is a Hermitian operator
whose eigenvalues are known

Let’s act the function on a vector,

exp(if(A)) o) = [cos(f(A)) +isin(f(A))] )

Since we know the eigenvalues,

= [cos(f(a)) + isin(f())] )

Matching solutions,

exp(if(A)) = cos(f(A)) +isin(f(A))
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1.4.d >, ¢4 (@) Ye ("), where ¢y (7') = (Z']d’)
Writing it out,

Do bu (@) () =Y (d|7) (&']a’)

a’

The middle two terms must be equal,

Z wZ/ (f’)wa/ (.’f”) - 55/75//
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1.5 Matrix Representation

1.5.a Consider two kets |o) and |5). Suppose (d'|a), (a"|a),... and (d'|3),

(a"|B),... are all known, where |d’), |a"),... form a complete set of
base kets. Find the matrix representation of the operator |o) (§| in
that basis

The answer is given in the text,

(a'la) (a'|B)"  (d|a) (a”|B)"
o) (8] = | {a”la) (@]8)" {a”|a) (a”]B)"

1.5.b  We now consider a spin-!/2 system and let |o) and |3) be |s, = //2)
and |s, = h/2), respectively. Write down explicitly the square ma-
trix that corresponds to |a) (| in the usual (s, diagonal) basis.

We expect to get a 2 X 2 matrix,

|52 = 1/2) (se = B/2| = |+) LVa((+] + (=)
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1.6 Adding Eigenkets

Suppose i) and |j) are eigenkets of some Hermitian operator A. Under what condition
can we conclude that |i) + |j) is also an eigenket of A? Justify your answer.

If we act A on our eigenkets,

Ali) = ali)
Alj) = d'|j)
In order for |i) + |j) to be an eigenket,
A([7) +17)) = a” ([3) + 17))
Alternatively,
A(li) +15)) = Ali) + Alj) = ali) +a'|5)

Comparing these two results, they are only equal if either |i) = |j) or a = d/, i.e., the eigenvalues
are degenerate.
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1.7 Ket Space

Consider a ket space spanned by the eigenkets of {|a’)} of a Hermitian operator A.
There is no degeneracy.

1.7.a Prove that

H(A —a')

a/
is the null operator Let’s act A on some unsuspecting eigenvector,

AW) = d' |
A|T) ' W) = [0)

(A—d'I)|¥) =0

A —a’ = 0 for at least one case. Since we product over all a’, if A —a’ = 0 for one case, then
the product over all of those is 0.

1.7.b  What is the significance of

If we act the given on |a'},

The product cancels out,

I
allial ( )

We can insert identity and use the above relation,

- 11 =% )i

a/I/#(l/ (a/ - a//)
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T =" 1wy = o) (a0

! __ "
a//¢a/ (a a’ )
This is the projection operator (1.16) of |a’).

1.7.c Illustrate (a) and (b) using A set equal to S, of a spin !/2 system.

As a reminder,

=0

with eigenvalues w = +7/2. Showing part (a), we substitute in A = S, and @’ as the eigenvalues,

];[(A —a') = (8. —"2)(S: +12)
- {8 _Oh] [g 8}

[[ta-a)=0

a’

For part (b), we have o’ = #/2 and o’ = —h/2,
H (A—d") S.+m2 [1 0
a”;ﬁa’ (a’/ - a’//) B h - 0 O

Acting this on some general vector,

o ol 3=

We pick out the spin-up component.
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1.8 Orthonormality

Using the orthonormality of |[+) and |—), prove

) h?
[Si, SJ] = ZﬁijkhSk, {S“ Sj} = () 5”

2
where
h
S = 2 (=14 1) )
Sy = T 1) (=1 1) ()
Se = 21+ (= 1) (D)

As an example, let’s set i = x and j = y and brute force,
ih?

[z, Sy] = SuSy = SySe = —=[(1+) (=) + (=) FDI=(4) (=) + (1) (+])]
—%[—(IH (=) + (=) EDIA+) (=D + (=) (+D]

= %[—(IH (=D ) (=D 4 () {=1=) (D) = (=) () (=) + (=) (=) (D)
| |

|
H() (=) D+ () (=) FD = (=) () (D = (=) (=) (D]

Using the orthonormality relationships,

= < l(14) (+) = (1=) (=D)] = RS,
We do the same thing with the anti-commutation relation,
{52, 5y} = 525y + 5y 50 = %[(IH (=D + (=) FDI=(+) (=) + (=) (+D]
+%[—(I+> (=D =+ (=) DA+ =D+ (=) (+D]
= %[—(IH (=) (=1 + () =) D = (=) ) (=D + (=) (=) (D
= (1) (=) (=D = (1) (1= (D + (=) (FH ) (=D + (=) (=) (D
=0

We can repeat this for all other combinations to prove the desired relations.
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1.9 Rotation Operators

Construct |S - 7;+) such that

L B\ -
A S~ﬁ|5~ﬁ;+>=(2)|5~ﬁ;+)
e where 7 is characterized by the angles shown in the figure.
~ ”(‘% Express your answer as a linear combination of |+) and |-).
e [Note: The answer is
_ . (8 (BN
Figure 1.1: Angles cos | 5 |[+) + sin 5 exp(ia) |—)

But do not just verify that this answer satisfies the above eigen-
value equation. Rather, treat the problem as a straightforward eigenvalue problem.
Also do not use rotation operators, which we will introduce later in this book.]

The first thing we do is figure out S.n,

S = hfa (0g,04,0,)
7t = (cos(a) sin(fB), sin(«) sin(5), cos(B))

§-i= g Kcos(a)o sin(3) Cos(a)osm(ﬁ)> + <z sin(a())sin(ﬁ) _ism(%) Sin(ﬂ)) + <COSO(B) COSO(B)

h [ cos(f3) sin(f)(cos(a) — isin(a))}
2 |sin(B)(cos(ar) + isin(a)) cos(f3)

IS g [ cos(8)  sin(p) eXp(—ia)}

"7 5 |sin(B) explia) cos(B)
If we now say that |§ - 1; +) is some arbitrary vector, we can solve the eigenvalue problem,

S-S a;+) =h|S i +)

iy " ComC - [1]

e Syt | [}

Our eigenket should be normalized,

|2 + [y =1
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Looking at the first line of the matrix,
x cos(B) + ysin(B) exp(—ia) = x

(1 —cos(B))x
sin(8) exp(—ia)

—
—
|
Q
Q
)
—~

B))?Iz|*

2
|y‘ = )

Inserting this into the normalization condition,

|| — 2|x|* cos(B) + |z[* cos* ()

2 _
S sin?(5) -
2lz|? — 2|z|* cos(B8) )

sin2(6) N
|x|2 _ sinQ(B)

2(1 — cos(B))

1 — cos?(B)
21 = cos(5))

1+ cos(p)

2 _
o = 5

Looking up half-angle formulas,
x = cos(B/2)
Plugging this into the second line,

wsin(B) explia) — ycos() = y

cos(8/2) sin(B) exp (i) — ycos(B) =y

y = cos(s2)—2(P) S explic)

1+ cos(pB

_ [14cos(B) sin(B) )
= 5 T+ cos(d) exp(ia)
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B sin?(3) )
—\ 2(1 + cos(B)) exp(ic)

= 71_%82(5) exp(ia
=\ 30+ con(3)) TP

y = sin(8/2) exp(ic)

() = (e )

Which, when we write using |+) and |—) gives the solution provided by Sakurai.

Combining,
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1.10 Energy Eigenvalues
The Hamiltonian operator for a two-state system is given by
H = a(]1) (1] = [2) (2 +[1) (2] + [2) (1])

where ¢ is a number with the dimension of energy. Find the energy eigenvalues and
the corresponding energy eigenkets (as linear combinations of |1) and |2)).

To find the energy eigenvalues,

It is probably easiest to do this in matrix representation. Setting

o< -]

In this basis,

Solving the characteristic equation ([1.20),
det(H — AI) = det [“;A “ } =0
—(a—=N(a+X)—-a*=0

A —242=0

Our eigenvalues are A = +av/2. Solving for the eigenvectors,

= ]

1
4+ 202

In the |1), |2) basis,

|av/2) [(1+v2]1) + 2)]

1
av3) = ;5510 = V211 + 2]
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1.11 Energy Eigenvalues
A two-state system is characterized by the Hamiltonian
H = Hui [1) (1] + H2 [2) 2 + Hi2[[1) (2] + [2) (1]

where Hy1, Hyo, and Hiy are real numbers with the dimension of energy, and |1) and |2)
are eigenkets of some observable (# H). Find the energy eigenkets and corresponding
energy eigenvalues. Make sure that your answer makes good sense for Hi2 = 0. (You
need not solve this problem from scratch. The following fact may be used without
proof:

(8- ) A5 +) = 5 |75 +)
with |n; +) given by

|7; +) = cos <§) |+) + exp(ic) sin <§> |—)

where 8 and a are the polar and azimuthal angles, respectively, that characterize 7.

This problem could be probably be solved in braket notation, but I'm more comfortable with
matrices,

Hyy Hio
H =
{Hu H22:|

Solving the characteristic equation ([1.20)) gives two eigenvalues,

(Hi1 + Hao) + /(Hi1 + Ho2)2 — 4(Hi1 Haz — Hi2)?

AL = 2

(H11 + Hao) — \/(Hu + Hao)? — 4(H11Hao — HZ)
2

Ay =
To find the eigenvalues, we have
(Hi1 —M)x—Hpoy=0
Let’s set « = 1, which gives us an eigenket of

1
A1) = [ Hii— M\
Hyp

Similarly,

Hys
|)‘2> = | Hiy 1— A1l
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If Hyp =0,

_ Hn 0
il

Our eigenvalues are A\ = Hy1, Hoo with

o=l

o=

It can be verified that these follow the formulas laid out above.

21
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1.12 1.12



1.13. 1.13

1.13 1.13
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1.14 Eigenvalues

A certain observable in quantum mechanics has a 3 x 3 matrix representation as follows:
Ly
V2 o 1 0

1.14.a Find the normalized eigenvectors of this observable and the cor-
responding eigenvalues. Is there any degeneracy?

Solving the characteristic equation (1.20)) gives the eigenvalues A = 0, £1. There is no degeneracy
since we have three eigenvalues for a 3 x 3 matrix. Solving for the eigenvectors,

1| 1]t 1] 1
_ ol: 11v==2 T A
o= |o | m=g el =g |

1.14.b Give a physical example where all this is relevant

Looking this up, these are the eigenvalues and eigenvectors for the spin-1 particle. I believe this is
further explained in chapter 3 of Sakurai.
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1.15 Simultaneous Eigenkets

Let A and B be observables. Suppose the simultaneous eigenkets of A and B {|a/,V')}
form a complete orthonormal set of base kets. Can we always conclude that

[A,B] =0

If your answer is yes, prove the assertion. If your answer is no, give a counterexample.

We start by writing [A, B] out and inserting identity on both sides,

[A, B => "> "|a",b") (a",b"|(AB — BA)|a',¥) (a, V|

al b’ al b’
If we act the operators on our ket, we use the eigenvalue,

AB|d',b') = d'b' |d,b)

[A,B] — Z Z |a”,b”> <a",b"|(a’b’ _ b'a’)|a’,b’> (a’,b’\

a’ ,b/ a'’ 7b//

We know that a’d’—ba’ = 0 since these are not operators, so the order doesn’t matter. [4, B] =0
if the simultaneous eigenkets of A and B form a complete orthonormal set of base kets.
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1.16 Simultaneous Eigenkets
Two Hermitian operators anticommute:
{A,B} =AB+BA=0

Is it possible to have a simultaneous (that is, common) eigenket of A and B? Prove or
illustrate your assertion.

Let’s act some eigenket of A on our anti-commutator,

(a"|ABla’) + (a"|BA|a)
— a// <a//|B|a/> _"_a/ <a//|B|a//>
~ (o + ) | Bla)

We expect this should be equal to 0 if A and B anti-commute. Since (a” + a’) # 0, this implies
(a"|Bla’y = 0 for both @’ = o’ and a” # o', which implies they do not have simultaneous eigenkets.
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1.17 Degenerate Eigenkets

Two observables A; and A;, which do not involve time explicitly, are known not to
commute,

[A1, A2] #0
yet we also know that A; and A; both commute with the Hamiltonian:
[Al,H]ZO, [AQ,H]:O

Prove that the energy eigenstates are, in general, degenerate. Are there exceptions?
As an example, you may think of the central -force problem H = j?/2m + V(r), with
Al — Lza A2 — Ll

We'll start by assuming the Hamiltonian is not degenerate, i.e.,
H |n) = Eln)

|n) is unique for each E.
Using the fact that our operators commute with the Hamiltonian, we can act the commutator
on our eigenket |n),

[A1, H]|n) = 0|n)
AHn) — HA; |n) =0

E(A1|n)) = H(Ay|n))
Since A; commutes with the Hamiltonian, they must share a complete set of eigenstates,
Ay |n) = ay |n)

We can do the same for A,.
If we act the commutator on the eigenstate,

[Al,AQ] |TL> = A1A2 |TL> — A2A1 |Tl>

= (a1a2 — asaq) |n)

Since a; and ag are scalars, the order doesn’t matter, which means [A;, A2] = 0. This is in
contradiction with the statement in the problem, so the energy eigenstates must be degenerate.
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1.18 1.18



1.19. 1.19

1.19 1.19
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1.20 1.20



1.21. 1.21

1.21 1.21
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1.22  1.22
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1.23 Degenerate Eigenstates

Consider a three-dimensional ket space. If a certain set of orthonormal kets-say, |1),
|2), |3)-are used as the base kets, the operators A and B are represented by

a 0 0 b 0 0
A=[0 —a 0 |; B=|0 0 —ib
0 0 -a 0 ib 0

with a and b both real.

1.23.a Obviously A exhibits a degenerate spectrum. Does B also exhibit

a degenerate spectrum?

To determine if B is degenerate, we solve the characteristic equation (1.20]), which gives us repeated
eigenvalues A = b,b, —b. There is degeneracy.

1.23.b Show that A and B commute

To show that A and B commute, we use brute force,

a 0 0 b 0 O ab 0 0
AB=10 —a 0 0 0 —=b|=10 0 iab
0 0 —a 0 b 0 0 —iab O
b 0 0 a O 0 ab 0 0
BA=|0 0 - 0 —a 0| =10 0 iab
0 b 0 0 0 =-—a 0 —iab O
1.23.c Find a new set of orthonormal kets which are simultaneous eigen-
kets of both A and B. Specify the eigenvalues of A and B for
each of the three eigenkets. Does your specification of eigenval-
ues completely characterize each eigenket?
A has eigenvalues A = —a, —a, a, so we’ll have three eigenvalues, A = —a, a,b. These have eigenkets,
1 0 0
1 1
W= (o] I—a) = |i]5 b= |
0 V2| V2|
If we act the eigenkets on each operator,
Ala) = ala)
Al—a) = —al|—a)

Alb) = —ab)
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Bla) =bla)
B|-a) = —b|—a)
Bb) =0b|b)

We see that no eigenket shares the same eigenvalues, which means that this forms a CSCO.
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1.24 Spinors

1.24.a Prove that (1/v/2)(1 +io,) acting on a two-component spinor can
be regarded as the matrix representation of the rotation operator
about the x-axis by angle —7/2. (The minus sign signifies that
the rotation is clockwise.)

The rotation matrix is given by
cos(®/2) — id - isin(¢/2)
Clockwise rotation about the x-axis by —/2 implies that ¢ = —¢/2 and 7 = 1,

cos(—7/a) — i - & sin(—7/4)

=1/2(1 + io,)

1.24.b Construct the matrix representation of S, when the eigenkets of
S, are used as base vectors.

We can write S, as

S. = g%a - iam)az\%(l +ioy)
o O A
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