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Chapter 1

Mathematical Introduction

1.1 Linear Vector Spaces: Basics

1.1.1 Vector Proofs

Verify these claims.

|0⟩ is unique, i.e., if |0′⟩ has all the properties of |0⟩, then |0⟩ = |0′⟩. For the first consider
|0⟩+ |0′⟩ and use the advertised properties of the two null vectors in turn.

Let’s do as suggested. Starting with |0⟩ + |0′⟩ and using the definition of the null vector for |0⟩,
|V ⟩+ |0⟩ = |V ⟩,

|0⟩+ |0′⟩ = |0′⟩ (1)

If |0′⟩ is also a null vector,
|0⟩+ |0′⟩ = |0⟩ (2)

Because the left side is the same, we can see |0⟩ = |0′⟩.

0 |V ⟩ = |0⟩. For the second start with |0⟩ = (0 + 1) |V ⟩+ |−V ⟩

Using distributive in the scalars,

(0 + 1) |V ⟩+ |−V ⟩ = 0 |V ⟩+ |V ⟩+ |−V ⟩ (3)

Using vector inverse and the definition of the null vector,

= 0 |V ⟩+ |0⟩ = 0 |V ⟩ (4)

(0 + 1) |V ⟩+ |−V ⟩ = 0 |V ⟩ (5)

Alternatively, we can perform the scalar addition from the get-go,

(0 + 1) |V ⟩+ |−V ⟩ = |V ⟩+ |−V ⟩ = |0⟩ (6)

Again, we started with the same input, and got two answers. 0 |V ⟩ = |0⟩.
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8 CHAPTER 1. MATHEMATICAL INTRODUCTION

|−V ⟩ = − |V ⟩. For the third, begin with |V ⟩+ (− |V ⟩) = 0 |V ⟩ = |0⟩.

We compare to the inverse under addition requirement,

|V ⟩+ |−V ⟩ = |0⟩ (7)

Comparing this to the suggestion, we see − |V ⟩ = |−V ⟩.

|−V ⟩ is the unique additive inverse of |V ⟩. For the last, let |W ⟩ also satisfy |V ⟩+|W ⟩ = |0⟩.
Since |0⟩ is unique, this means |V ⟩+ |W ⟩ = |V ⟩+ |−V ⟩. Take it from here.

Shankar has sort of solved it all already for us. Since we know that both |V ⟩+ |W ⟩ and |V ⟩+ |−V ⟩
return 0, we can compare the two and see that |W ⟩ = |−V ⟩.

I tend to have trouble with proofs because I never really know what I’m allowed to assume
or what sort of common sense, ”it’s right there” steps I’m allowed to take. I’m also far from
mathematically rigorous.
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1.1.2 Vector Space Example

Consider the set of all entities of the form (a, b, c) where the entries are real numbers.
Addition and scalar multiplication are defined as follows:

(a, b, c) + (d, e, f) = (a+ d, b+ e, c+ f)

α(a, b, c) = (αa, αb, αc)

Write down the null vector and inverse of (a, b, c). Show that vectors of the form
(a, b, 1) do not form a vector space.

By observation, the null vector,
|0⟩ = (0, 0, 0) (1)

and the inverse,
|−V ⟩ = (−a,−b,−c) (2)

To show (a, b, 1) do not from a vector space, let’s go through the list of requirements. First
closure, let’s add two vectors together,

(a, b, 1) + (c, d, 1) = (a+ c, b+ d, 2) (3)

We see that the resultant vector is not of the form (a, b, 1) so we break closure.
Next, let’s try to find a null vector. We quickly realize that the only vector that satisfies this

is (0, 0, 0), which is not of the form (a, b, 1). The null vector must also exist as part of the vector
space so we break that rule as well.

Assuming we were allowed to have a null vector (0, 0, 0), we would also break the inverse under
addition rule since an inverse of (a, b, 1) is (−a,−b,−1), which is not the correct form.
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1.1.3 Functions as Vectors

Do functions that vanish at the end points x = 0 and x = L form a vector space? How
about periodic functions obeying f(0) = f(L)? How about functions that obey f(0) = 4?
If the functions do not qualify, list the things that go wrong.

We can convince ourselves that the first two form a vector space since we have the null vector
of f(x) = 0 and an inverse function f(x) + (−f(x)) = 0. The periodic condition would normally
disqualify us from closure, think of sin(x) and sin(x/

√
2). However, since we return to the same

point after a length L, the two functions will always have the same period, which allows them to
have closure.

Functions that obey f(0) = 4 does not qualify as a vector space. It breaks closure since adding
two functions will give f(0) = 8. We can’t find a null vector or an inverse.
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1.1.4 Linear Independence

Consider three elements from the vector space of real 2× 2 matrices:

|1⟩ =
[
0 1
0 0

]
|2⟩ =

[
1 1
0 1

]
|3⟩ =

[
−2 −1
0 −2

]
Are they linearly independent? Support your answer with details. (Notice we are

calling these matrices vectors and using kets to represent them to emphasize their role
as elements of a vector space.)

We can quickly see that none of the vectors are scalar multiples of the other, but let’s see if |3⟩
is a linear combination of |1⟩ and |2⟩

a |1⟩+ b |2⟩ = |3⟩ (1)

Looking at each element, we have the system of equations,
b = −2

a+ b = −1

0 = 0

b = −2

(2)

From this, we get a = 1 and b = −2 or |1⟩ − 2 |2⟩ = |3⟩. These three elements are not linearly
independent.
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1.1.5 Linear Independence

Show that the following row vectors are linearly dependent: (1, 1, 0), (1, 0, 1), (3, 2, 1).

Let’s label these vectors |1⟩, |2⟩, |3⟩.

a |1⟩+ b |2⟩ = |3⟩ (1)

We have the system of equations, 
a+ b = 3

a = 2

b = 1

(2)

We see that 2(1, 1, 0)+(1, 0, 1)−(3, 2, 1) = (0, 0, 0), making this combination linearly dependent.

Show the opposite for (1, 1, 0), (1, 0, 1), (0, 1, 1)

Following the same steps, we have the system of equations,
a+ b = 0

a = 1

b = 1

(3)

We can convince ourselves there is no set of a and b that satisfy these conditions, so this set is
linearly independent.



1.2. INNER PRODUCT SPACES 13

1.2 Inner Product Spaces
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1.3 Dual Spaces and the Dirac Notation

1.3.1 Gram-Schmidt Application

Form an orthonormal basis in two dimensions starting with A⃗ = 3̂i+4ĵ and B⃗ = 2̂i− 6ĵ.
Can you generate another orthonormal basis starting with these two vectors? If so,
produce another.

Applying the Gram-Schmidt theorem, we first re-normalize A⃗,

|1⟩ = 3

5
î+

4

5
ĵ (1)

The second step,
|2′⟩ = |B⟩ − |1⟩ ⟨1|B⟩ (2)

= 2̂i− 6ĵ − 3̂i+ 4ĵ

25
(3̂i+ 4ĵ) · (2̂i− 6ĵ) (3)

= (2̂i− 6ĵ) +
18

25
(3̂i+ 4ĵ) =

1

25
(104̂i− 78ĵ) (4)

Renormalizing this,

|2⟩ = 4

5
î− 3

5
ĵ (5)

To generate a different orthonormal basis, we start by renormalizing B⃗,

|1⟩ = 1√
10
î− 3√

10
ĵ (6)

Subtracting out the projection,

|2′⟩ = 3̂i+ 4ĵ − î− 3ĵ

10
(̂i− 3ĵ) · (3̂i+ 4ĵ) (7)

=
1

10
(39̂i+ 13ĵ) (8)

Renormalizing,

|2⟩ = 1√
10

(3̂i+ ĵ) (9)
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1.3.2 Another Gram-Schmidt Application

Show how to go from the basis

|I⟩ =

30
0

 ; |II⟩ =

01
2

 ; |III⟩ =

02
5


to the orthonormal basis

|1⟩ =

10
0

 ; |2⟩ =

 0

1/
√
5

2
√
5

 ; |3⟩ =

 0

−2/
√
5

1/
√
5



To start, we can normalize |I⟩,

|1⟩ =

10
0

 (1)

|2′⟩ = |II⟩ − |1⟩ ⟨1|II⟩ =

01
2

−

10
0

 [1 0 0
] 01

2

 =

01
2

 (2)

|2⟩ = 1√
5

01
2

 (3)

|3′⟩ = |III⟩ − |1⟩ ⟨1|III⟩ − |2⟩ ⟨2|III⟩ = (4)

=

02
5

−

10
0

 [1 0 0
] 02

5

− 1

5

01
2

 [0 1 2
] 02

5

 =
1

5

 0
−2
1

 (5)

|3⟩ = 1√
5

 0
−2
1

 (6)
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1.3.3 Schwarz Equality

When will this equality be satisfied? Does this agree with your experience with arrows?

⟨V |V ⟩ ≥ ⟨W |V ⟩ ⟨V |W ⟩
|W |2

⟨V |V ⟩ = ⟨W |V ⟩ ⟨V |W ⟩
|W |2

(1)

Looking at the top side of the right hand side of the equation, we want ⟨W |V ⟩ = |W |, which
happens when

|V ⟩ = a |W ⟩ (2)

Substituting this back in, we get
⟨V |V ⟩ = |V |2 (3)

This is what we expect from our experience with vectors. The dot product of two vectors is
equal to the length squared. Another way of saying this is that the way to maximize a dot product
is to multiply a vector by itself.
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1.3.4 Triangle Inequality

Prove the triangle inequality starting with |V +W |2. You must use ℜ ⟨V |W ⟩ ≤ | ⟨V |W ⟩ |
and the Schwarz inequality. Show that the final inequality becomes an equality only
if |V ⟩ = a |W ⟩ where a is a real positive scalar.

We can expand |V +W |2,
|V +W |2 = ⟨V +W |V +W ⟩ (1)

= ⟨V |V ⟩+ ⟨W |V ⟩+ ⟨V |W ⟩+ ⟨W |W ⟩ = ⟨V |V ⟩+ 2 ⟨V |W ⟩+ ⟨W |W ⟩ (2)

Starting with the ℜ ⟨V |W ⟩ ≤ | ⟨V |W ⟩ |, we want this to look like above. First, we can use the
Schwarz inequality, (Eq. 1.3.15),

ℜ ⟨V |W ⟩ ≤ |V ||W | (3)

We then add |V |2 + |W |2 to both sides,

⟨V |V ⟩+ 2ℜ ⟨V |W ⟩+ ⟨W |W ⟩ ≤ |V |2 + |W |2 + 2|V ||W | (4)

Simplifying,
|V +W |2 ≤ (|V |+ |W |)2 (5)

Which then gives the triangle inequality.
To get the triangle equality, let’s plug in |V ⟩ = a |W ⟩. Going back to Equation 2,

⟨V |V ⟩+ ⟨W |V ⟩+ ⟨V |W ⟩+ ⟨W |W ⟩ = ⟨V |V ⟩+ a ⟨V |V ⟩+ a ⟨V |V ⟩+ a2 ⟨V |V ⟩ (6)

= (a2 + 2a+ 1)|V |2 (7)

Comparing to |V +W |2,
|V +W |2 = (1 + a)2|V |2 (8)
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1.4 Subspaces

1.4.1 Orthogonal Subspace

In a space Vn, prove that the set of all vectors {|V 1
⊥⟩ , |V 2

⊥⟩ , ...}, orthogonal to any
|V ⟩ ≠ |0⟩, form a subspace Vn−1.

We start with the vector space Vn. Looking at the definition of a vector space, we can convince
ourselves that a subspace of Vn will follow many of the same rules. Let’s look at closure. If we take
a vector |V⊥⟩ and add it to another orthogonal vector, we should get a resulting vector orthogonal
to |V ⟩. There are going to be n− 1 dimensions because n elements form a linear basis in Vn. One
vector is removed, resulting in n− 1 basis vectors.
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1.4.2 Vector Space Addition

Suppose Vn1
1 and Vn2

2 are two subspaces such that any element of V1 is orthogonal to
any element of V2. Show that the dimensionality of V1

⊕
V2 is n1+n2. (Hint: Theorem

4.)

The dimensions of each vector space is,{
dim(V n1

1 ) = n1

dim(V n2
2 ) = n2

(1)

Since all vectors between the two are orthogonal, there is no overlap, so the dimension of the
resulting vector space is the dimension of each combined.
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1.5 Linear Operators
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1.6 Matrix Elements of Linear Operators

1.6.1 Operator Action

An operator Ω is given by the matrix 0 0 1
1 0 0
0 1 0


What is its action?

Let’s act Ω on the usual three basis vectors,
Ω |1⟩ = |2⟩
Ω |2⟩ = |3⟩
Ω |3⟩ = |1⟩

(1)

Which is the permutation operator.
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1.6.2 Hermitian Operators

Given Ω and Λ are Hermitian what can you say about

ΩΛ

(ΩΛ)† = Λ†Ω† = ΛΩ (1)

Hermitian if Ω and Λ commute.

ΩΛ + ΛΩ

(ΩΛ + ΛΩ)† = Λ†Ω† +Ω†Λ† (2)

= ΛΩ + ΩΛ (3)

Hermitian.

[Ω,Λ]

(ΩΛ− ΛΩ)† (4)

Following the same logic as above, anti-Hermitian.

i[Ω,Λ]

(iΩΛ− iΛΩ)† = −iΛΩ+ iΩΛ = i(ΩΛ− ΛΩ) (5)

Hermitian.
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1.6.3 Unitary Operators

Show that a product of unitary operators is unitary.

A restatement of this is to show,
UV (UV )† = I (1)

Using (1.6.16),
UV (UV )† = UV V †U† (2)

Because U and V are unitary, we can kill these terms,

= UIU† = UU† = I (3)
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1.6.4 Determinant

It is assumed that you know (1) what a determinant is, (2) that detΩT = detΩ (T
denotes transpose), (3) that the determinant of a product of matrices is the product
of the determinants. [If you do not, verify these properties for a two-dimensional case

Ω =

(
α β
γ δ

)
with detΩ = (αδ − βγ).] Prove that the determinant of a unitary matrix is a complex
number of unit modulus.

We want to show,
detU = a+ ib (1)

where |a + ib| = 1. We take the determinant of a unitary matrix. We are then left with the
identity matrix, which has determinant of one, thus proving unit modulus,

detUU† = det I = 1 (2)

Because the determinant of a product of matrices is the product of the determinants,

detUU† = detU detU† (3)

= detU ∗ (detUT )∗ (4)

Since the determinant of a matrix transpose is equal to the determinant of the matrix,

= detU(detU)∗ = 1 (5)

The only way to satisfy this without complex numbers is if U is the identity matrix. Otherwise,
detU = a+ bi.
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1.6.5 Rotational Matrix Unitarity

Verify that R(1/2πî) is unitary(orthogonal) by examining its matrix.

From (1.6.4),

R(1/2πî) =

1 0 0
0 0 −1
0 1 0

 (1)

Nothing doing,

R(1/2πî)R†(1/2πî) =

1 0 0
0 0 −1
0 1 0

1 0 0
0 0 1
0 −1 0

 =

1 0 0
0 1 0
0 0 1

 (2)

We could also think about this as R(1/2πî) being the counter-clockwise rotation around the
x-axis and R(1/2πî) as the clockwise rotation around the x-axis. If we take a vector and rotate it
by π/2 and then rotate it by π/2 the other way, we get back to where we started.



26 CHAPTER 1. MATHEMATICAL INTRODUCTION

1.6.6 Unitary Matrices

Verify that the following matrices are unitary. Verify that the determinant is of the
form exp(iθ) in each case. Are any of the above matrices Hermitian?

1

21/2

[
1 i
i 1

]
1

2

[
1 i
i 1

] [
1 −i
−i 1

]
=

1

2

[
2 0
0 2

]
(1)

detΩ =
1

2
(1− i2) = 1 = exp(0) (2)

This matrix is not Hermitian.

1

2

[
1 + i 1− i
1− i 1 + i

]
1

4

[
1 + i 1− i
1− i 1 + i

] [
1− i 1 + i
1 + i 1− i

]
=

1

4

[
4 0
0 4

]
(3)

detΛ =
1

4
((1 + i)2 − (1− i)2) = i = exp(iπ/2) (4)

This matrix is not Hermitian.
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1.7 Active and Passive Transformations

1.7.1 Matrix Trace

The trace of a matrix is defined to be the sum of its diagonal matrix elements

TrΩ =
∑
i

Ωii

Show that

Tr(ΩΛ) = Tr(ΛΩ)

Tr(ΩΛ) =
∑
i

(ΩΛ)ii (1)

=
∑
ij

ΩijΛji (2)

Since Ωij and Λji are matrix elements and scalar, we can move those freely,

=
∑
ij

ΛjiΩij =
∑
j

(ΛΩ)jj = Tr(ΛΩ) (3)

Tr(ΩΛθ) = Tr(ΛθΩ) = Tr(θΩΛ). (The permutations are cyclic)

Tr(ΩΛθ) =
∑
ijk

ΩijΛjkθki (4)

Moving these scalar quantities around and collapsing,

=
∑
ijk

ΛjkθkiΩij =
∑
jj

(ΛθΩ)jj = Tr(ΛθΩ) (5)

We also have,

=
∑
ijk

θkiΩijΛjk =
∑
kk

(θΩΛ)kk = Tr(θΩΛ) (6)

The trace of an operator is unaffected by a unitary change of basis |i⟩ → U |i⟩. [Equiv-
alently, show TrΩ = Tr(U†ΩU ]

.
Starting with the unitary change, we can use the previous part and move things around cyclically,

Tr(U†ΩU) = Tr(ΩUU†) = TrΩ (7)
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1.7.2 Determinant of a Unitary Change of Basis

Show that the determinant of a matrix is unaffected by a unitary change of basis.
[Equivalently show detΩ = det(U†ΩU)]

Let’s prove the equivalent statement. Since the determinant of a product of matrices is the
product of the determinants,

det(U†ΩU) = detU† detΩdetU (1)

Now, since each of these is just a scalar, we can move them around freely,

= detΩdetU† detU = detΩdet(U†U) = detΩ (2)
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1.8 The Eigenvalue Problem

1.8.1 An Eigenproblem Example

Find the eigenvalues and normalized eigenvectors of the matrix,

Ω =

1 3 1
0 2 0
0 1 4



We’ll work through one eigenvalue problem and the method of characteristic polynomial in
detail. We start by taking the determinant,

det(Ω− ωI) = det

1− ω 3 1
0 2− ω 0
0 1 4− ω

 (1)

= (1− ω)(2− ω)(4− ω) = 0 (2)

We can see that our eigenvalues are ω = 1, 2, 4. We can then label each of our eigenkets so. For
|1⟩, we need to solve, 1− 1 3 1

0 2− 1 0
0 1 4− 1

ab
c

 =

00
0

 (3)

We get the system of equations, 
3b+ c

b = 0

b+ 3c = 0

(4)

The normalized solution,

|1⟩ =

10
0

 (5)

In the same manner, we can get the other normalized eigenkets,

|2⟩ = 1√
30

−5
−2
1

 (6)

|4⟩ = 1√
10

10
3

 (7)

Is the matrix Hermitian? Are the eigenvectors orthogonal?

The matrix is not Hermitian, and by Theorem 10, we do not expect(nor do we get) orthogonal
eigenvectors.
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1.8.2 Eigenvalue Problem

Consider the matrix

Ω =

0 0 1
0 0 0
1 0 0



Is it Hermitian?

By observation, yes.

Find its eigenvalues and eigenvectors

Solving the characteristic equation, we get eigenvalues, ω = 0,±1. The corresponding eigenkets,

|0⟩ =

01
0

 ; |1⟩ = 1√
2

10
1

 ; |−1⟩ = 1√
2

 1
0
−1

 (1)

Verify that U†ΩU is diagonal, U being the matrix of eigenvectors of Ω

U =

0 1/
√
2 1/

√
2

1 0 0

0 1/
√
2 −1/

√
2

 (2)

U†ΩU =

 0 1 0

1/
√
2 0 1/

√
2

1/
√
2 0 −1/

√
2

0 0 1
0 0 0
1 0 0

0 1/
√
2 1/

√
2

1 0 0

0 1/
√
2 −1/

√
2

 =

0 0 0
0 1 0
0 0 −1

 (3)

We get a diagonal matrix out with the ii indices corresponding to the eigenvalue of the eigenket
that we used as the column in U .



1.8. THE EIGENVALUE PROBLEM 31

1.8.3 Eigenvalue Problem

Consider the Hermitian matrix,

Ω =
1

2

2 0 0
0 3 −1
0 −1 3



Show that ω1 = ω2 = 1; ω3 = 2

We are able to reduce to the characteristic equation,

detΩ = (1− ω)(2− 3ω + ω2) = 0 (1)

Which gives us the required eigenvalues.

Show that |ω = 2⟩ is any vector of the form

1

(2a2)1/2

 0
a
−a


The easiest way to show this is by solving for (Ω− 2I) |ω = 2⟩ = |0⟩, which gives us,

1√
2

 0
1
−1

 (2)

We can then scale this by a.

Show that the ω = 1 eigenspace contains all vectors of the form below either by feeding
ω = 1 into the equations or by requiring that the ω = 1 eigenspace by orthogonal to
|ω = 2⟩

1

(b2 + 2c2)1/2

bc
c


We solve, 0 0 0

0 1/2 −1/2
0 −1/2 1/2

ab
c

 =

00
0

 (3)

The easiest solution is,

1√
3

11
1

 (4)

To make it orthogonal to |ω = 2⟩, we can vary the first element independently from the other
two.
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1.8.4 Eigenvalue Problem

An arbitrary n× n matrix need not have n eigenvectors. Consider as an example

Ω =

[
4 1
−1 2

]

Show that ω1 = ω2 = 3

The characteristic equation,

(4− ω)(2− ω) + 1 = (ω − 3)2 = 0 (1)

Which gives us our two eigenvalues.

By feeding in this value show that we get only one eigenvector of the form. We cannot
finda another one that is LI

1

(2a2)1/2

[
+a
−a

]
We solve, [

1 1
−1 −1

] [
a
b

]
=

[
0
0

]
(2)

We get,

|3⟩ = 1√
2

[
1
−1

]
(3)

which can then be scaled to match the solution.
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1.8.5 Eigenvalue Problem

Consider the matrix

Ω =

[
cos(θ) sin(θ)
− sin(θ) cos(θ)

]

Show that it is unitary

Nothing doing,

ΩΩ† =

[
cos(θ) sin(θ)
− sin(θ) cos(θ)

] [
cos(θ) − sin(θ)
sin(θ) cos(θ)

]
= I (1)

Show that its eigenvalues are exp(iθ) and exp(−iθ)

We have the characteristic polynomial,

(cos(θ)− ω)2 + sin2(θ) = ω2 − 2ω cos(θ) + 1 = 0 (2)

Using the quadratic formula,

ω = cos(θ)± i sin(θ) = exp(±iθ) (3)

Find the corresponding eigenvectors; show that they are orthogonal

Using the usual suspects,

|exp(iθ)⟩ = 1√
2

[
1
i

]
(4)

|exp(−iθ)⟩ = 1√
2

[
1
−i

]
(5)

To show that they are orthogonal,

⟨exp(−iθ)| exp(iθ)⟩ = 1

2

[
1 i

] [1
i

]
=

1

2
(1 + i2) = 0 (6)

Verify that U†ΩU =(diagonal matrix), where U is the matrix of eigenvectors of Ω

U =

[
1/
√
2 1/

√
2

i/
√
2 −i/

√
2

]
(7)

U†ΩU =

[
1/
√
2 −i/

√
2

1/
√
2 i/

√
2

] [
cos(θ) sin(θ)
− sin(θ) cos(θ)

] [
1/
√
2 1/

√
2

i/
√
2 −i/

√
2

]
=

[
exp(iθ) 0

0 exp(−iθ)

]
(8)
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1.8.6 Determinant and Eigenvalues

We have seen that the determinant of a matrix is unchanged under a unitary change
of basis. Argue now that

detΩ = product of eigenvalues of Ω =

n∏
i=1

ωi

for a Hermitian or unitary Ω

We know that performing a passive transformation on a Hermitian matrix Ω → UΩU† returns
a diagonal matrix whose elements are the eigenvalues of Ω.

det(U†ΩU) =
∏

ωi (1)

Finally, we know since the determinant of a matrix is unchanged under a unitary change of
basis, the left side is equal to detΩ.

Using the invariance of the trace under the same transformation, show that

TrΩ =

n∑
i=1

ωi

Using the same logic as above, we perform that unitary change of basis,

TrΩ = Tr(U†ΩU) =
∑

ωi (2)

Since U†ΩU gives the diagonal matrix with elements equal to the eigenvalues.
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1.8.7 Eigenvalue Problem, Hermitian Matrix

By using the results on the trace and determinant from the last problem, show that
the eigenvalues of the matrix

Ω =

[
1 2
2 1

]
are 3 and -1. Verify this by explicit computation. Note that the Hermitian nature of
the matrix is an essential ingredient.

We see {
detΩ = −3

TrΩ = 2
(1)

We can convince ourselves that the only two values which satisfy this are ω = 3,−1. Further-
more, we know the eigenvalues of a Hermitian operator must be real from Theorem 9.

The characteristic polynomial,

(1− ω)2 − 4 = ω2 − 2ω − 3 = 0 (2)
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1.8.8 Eigenvalue of Hermitian Matrices

Consider Hermitian matrices M1, M2, M3, M4 that obey

M iM j +M jM i = 2δijI, i, j = 1, ..., 4

Show that the eigenvalues of M i are ±1. (Hint: go to the eigenbasis of M i, and use
the equation for i = j

For i = j,
M iM i = I (1)

The determinant is 1, and the trace is n. The only real numbers which would satisfy these two
is if the eigenvalues are some combination of +1 and −1.

By considering the relation

M iM j = −M jM i; for i ̸= j

show that M i are traceless. [Hint: Tr(ACB) = Tr(CBA)]
We multiply both sides by M i and use M iM i = I,

M iM jM i = −M jM iM i (2)

M iM jM i = −M j (3)

Taking the trace of both sides,

Tr(M iM jM i = −TrM j (4)

On the left hand side, we use the cyclic nature of the trace to get the M i next to each other
and kill them,

TrM j = −TrM j (5)

The only way for this to be true is if M i is traceless.

Show that they cannot be odd-dimensional matrices

We showed that {
detM i = 1

TrM i = 0
(6)

We must have an equal number of +1 and −1 eigenvalues, which means that M i is an even-
dimensional matrix.
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1.8.9 Moment of Inertia

A collection of masses mα, located at r⃗α and rotating with angular velocity ω⃗ around
a common axis has an angular momentum

l⃗ =
∑
α

mα(r⃗α × v⃗α)

where v⃗α = ω⃗ × r⃗α is the velocity of mα. by using the identity

A⃗× (B⃗ × C⃗) = B⃗(A⃗ · C⃗)− C⃗(A⃗ · B⃗)

show that each Cartesian component li of l⃗ is given by

li =
∑
j

Mijωj

where

Mij =
∑
α

mα[r
2
αδij − (r⃗α)i(r⃗α)j ]

or in Dirac notation

|l⟩ =M |ω⟩

Writing out l⃗,

l⃗ =
∑
α

mα(r⃗α × (ω⃗ × r⃗α)) (1)

=
∑
α

mα(ω⃗(r⃗α · r⃗α)− r⃗α(r⃗α · ω⃗)) (2)

Looking at the individual elements,

li =
∑
α

∑
j

mα[r
2
αδij − (r⃗α)i(r⃗α)j ]ωj (3)

Will the angular momentum and angular velocity always be parallel?

Looking at the Dirac notation, we can convince ourselves that angular momentum and angular
velocity will only be parallel for the eigenvalues of M (it looks like the statement of the eigenvalue
problem).

Show that the moment of inertia matrix Mij is Hermitian.

What we want to show is
Mij =Mji (4)

mα(r
2
αδij − r⃗αir⃗αj) = mα(r

2
αδji − r⃗αj r⃗αi) (5)

We know this is true because {
δij = δji

r⃗αir⃗αj = r⃗αj r⃗αi
(6)

since r⃗αi is scalar.
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Argue now that there exist three directions for ω⃗ such that l⃗ and ω⃗ will be parallel.
How are these directions to be found?

These directions can be found by finding the eigenkets of M . There are three directions because
M is a three-dimensional matrix and thus has three eigenkets.

Consider the moment of inertia matrix of a sphere. Due to the complete symmetry
of the sphere, it is clear that every direction is its eigendirection for rotation. What
does this say about the three eigenvalues of the matrix M

The three eigenvalues are degenerate since only one is needed to form a complete basis.
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1.8.10 Simultaneous Diagonalization

By considering the commutator, show that the following Hermitian matrices may be
simultaneously diagonalized. Find the eigenvectors common to both and verify that
under a unitary transformation to this basis, both matrices are diagonalized.

Ω =

1 0 1
0 0 0
1 0 1

 ; Λ =

2 1 1
1 0 −1
1 −1 2


Since Ω is degenerate and Λ is not, you must be prudent in deciding which matrix
dictates the choice of basis.

We start by making sure Ω and Λ commute.

ΩΛ = ΛΩ =

3 0 3
0 0 0
3 0 3

 (1)

Let’s find the eigenvalues of Λ since it is not degenerate. The characteristic polynomial,

(2− ω)(ω2 − 2ω − 1)− (3− ω)− (1− ω) = (2− ω)(ω2 − 2ω − 3) = 0 (2)

gives ω = 2, 3,−1. We can then find the eigenkets of Λ,

|2⟩ = 1√
3

 1
1
−1

 ; |3⟩ = 1√
2

10
1

 ; |−1⟩ = 1√
6

−1
2
1

 (3)

To check, let’s make sure these are eigenkets of Ω,
Ω |2⟩ = 0 |2⟩
Ω |3⟩ = 2 |3⟩
Ω |−1⟩ = 0 |−1⟩

(4)

and so we expect the eigenvalues of Ω to be 0,0,2.
Let’s perform the unitary transformation,

U =

 1/
√
3 1/

√
2 −1/

√
6

1/
√
3 0 2/

√
6

−1/
√
3 1/

√
2 1/

√
6

 (5)

U†ΩU =

 1/
√
3 1/

√
3 −1/

√
3

1/
√
2 0 1/

√
2

−1/
√
6 2/

√
6 1/

√
6

1 0 1
0 0 0
1 0 1

 1/
√
3 1/

√
2 −1/

√
6

1/
√
3 0 2/

√
6

−1/
√
3 1/

√
2 1/

√
6

 =

0 0 0
0 2 0
0 0 0

 (6)

U†ΛU =

 1/
√
3 1/

√
3 −1/

√
3

1/
√
2 0 1/

√
2

−1/
√
6 2/

√
6 1/

√
6

2 1 1
1 0 −1
1 −1 2

 1/
√
3 1/

√
2 −1/

√
6

1/
√
3 0 2/

√
6

−1/
√
3 1/

√
2 1/

√
6

 =

2 0 0
0 3 0
0 0 1

 (7)
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1.8.11 Coupled Mass

Consider the coupled mass problem discussed above

Given that the initial state is |1⟩, in which the first mass is displaced by unity and the
second is left alone, calculate |1(t)⟩ by following the algorithm.

Our initial state is given by,

|x(0)⟩ = |1⟩ =
[
1
0

]
(1)

The first step is to solve the eigenvalue problem of H. We don’t expect the equations of motion
to change if the initial conditions are changed,

ωI =

(
k

m

)1/2

; |I⟩ = 1√
2

[
1

1

]
;

ωII =

(
3k

m

)1/2

; |II⟩ = 1√
2

[
1

−1

] (2)

We then look at the propagator U(t), which is given by (1.8.43). However, we want this in the
standard |1⟩, |2⟩ basis, so we go back to (1.8.41),

U(t) = |I⟩ ⟨I| cos(ωIt) + |II⟩ ⟨II| cos(ωIIt) =

1

2

[
cos(ωIt) + cos(ωIIt) cos(ωIt)− cos(ωIIt)
cos(ωIt)− cos(ωIIt) cos(ωIt) + cos(ωIIt)

]
(3)

Applying this to our initial conditions,

|x(t)⟩ = U(t) |x(0)⟩ (4)

|x(t)⟩ =


1

2

(
cos

(√
k

m
t

)
+ cos

(√
3k

m
t

))

1

2

(
cos

(√
k

m
t

)
− cos

(√
3k

m
t

))
 (5)

Compare your result with that following from Eq.(1.8.39)

We can convince ourselves that we get the same result if we plug in the initial conditions (I’m not
going to do it here because it is alot of typing).
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1.8.12 Coupled Mass

Consider once again the problem discussed in the previous example.

Assuming that

|ẍ⟩ = Ω |x⟩

has a solution

|x(t)⟩ = U(t) |x(0)⟩

find the differential equation satisfied by U(t). Use the fact that |x(0)⟩ is arbitrary.
Inserting the second given equation into the first,

|ẍ⟩ = ΩU(t) |x(0)⟩ (1)

d2

dt2
|x⟩ = ΩU(t) |x(0)⟩ (2)

d2U

dt2
|x(0)⟩ = ΩU(t) |x(0)⟩ (3)

Matching the sides and removing |x(0)⟩, we get the differential equation,

d2U

dt2
= ΩU (4)

d2U(t)

dt2
− ΩU(t) = 0 (5)

Assuming(as is the case) that Ω and U can be simultaneously diagonalized, solve for
the elements of the matrix U in this common basis and regain Eq. (1.8.43). Assume
|ẋ(0)⟩ = 0

Let’s work with both Ω and U diagonalized, with the elements being the eigenvalues. Looking at
Equation 5, [

Ü11 0

0 Ü22

]
−
[
−ω2

1 0
0 −ω2

2

] [
U11 0
0 U22

]
= 0 (6)

We have the system of equations, {
Ü11 + ω2

1U11 = 0

Ü22 + ω2
2U22 = 0

(7)

We can convince ourselves(from remembering harmonic motion) that the solution will take the
form, {

U11 = A1 cos(ω1t) +B1 sin(ω1t)

U22 = A2 cos(ω2t) +B2 sin(ω2t)
(8)
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Using the condition, |ẋ(0)⟩ = 0 and substituting into,

dU(t)

dt
|ẋ(0)⟩ = 0 (9)

we then use U̇11(0) = 0 and U̇22(0) = 0 to show that A1 = A2 = 1 and B1 = B2 = 0,

U(t) =

[
cos(ω1t) 0

0 cos(ω2t)

]
(10)
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1.9 Functions of Operators and Related Concepts

1.9.1 Hermitian Operator Power Series

We know that the series

f(x) =

∞∑
n=0

xn

may be equated to the function f(x) = (1 − x)−1 if |x| < 1. By going to the eigenbasis,
examine when the q number power series

f(Ω) =

∞∑
n=0

Ωn

of a Hermitian operator Ω may be identified with (1− Ω)−1.

Going to the eigenbasis,

f(Ω) =


∑∞

n=0 ω
n
1

. . . ∑∞
n=0 ω

n
m

 (1)

If we want f(Ω) to go to (1− Ω)−1, we need each element to go to (1− x)−1, which converges
if |ωn| < 1 for all eigenvalues ωm.
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1.9.2 Operator Analogy of Complex Numbers

If H is a Hermitian operator, show that U = exp(iH) is unitary. (Notice the analogy
with c numbers: if θ is real, u = exp(iθ) is a number of unit modulus.)

We can write,

U = exp(iH) =

exp(iω1)
. . .

exp(iωn)

 (1)

U†U =

exp(−iω1)
. . .

exp(−iωn)


exp(iω1)

. . .

exp(iωn)

 = I (2)
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1.9.3 Determinant of a Function of Operators

For the case above, show that detU = exp(iTrH)

Writing out,

det

exp(iω1

. . .

exp(iωn)

 = exp(iω1) exp(iω2)... exp(iωn) (1)

= exp(i(ω1 + ω2 + ...ωn)) = exp(iTrH) (2)



46 CHAPTER 1. MATHEMATICAL INTRODUCTION

1.10 Generalization to Infinite Dimensions

1.10.1 Delta Function

Show that δ(ax) = δ(x)/|a|. [Consider
∫
δ(ax) d(ax). Remember that δ(x) = δ(−x).]

We start by saying, ∫
δ(x)

|a|
g(x) dx =

g(0)

|a|
(1)

We now want to show this is equivalent to what we want to prove. We consider what the
problem wants us to consider, ∫

δ(ax)g(x) d(ax) (2)

We then make the substitution, y = ax,∫
δ(y)g(y/a)

1

a
dy =

g(0)

|a|
(3)

Comparing solutions,
∂(x)

|a|
= δ(ax) (4)
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1.10.2 Delta Function

Show that

δ(f(x)) =
∑
i

δ(xi − x)

|df/dxi|

where xi are the zeros of f(x). Hint: Where does δ(f(x)) blow up? Expand f(x)
near such points in a Taylor series, keeping the first nonzero term.

On the right side, let’s use the results from problem 1.10.1,∫ ∑ δ(xi − x)

|df/dxi|
g(x) dx =

∑ g(xi)

|df/dxi|
(1)

On the left, if we expand f(x) as a Taylor series,

f(x) = f(xi) + (x− xi)f
′(xi) = (x− xi)f

′(xi) (2)

If we use the results from problem 1.10.1,∫
δ(f(x))g(x) dx =

∫
δ((x− xi)f

′(xi))g(x) dx (3)

1

f ′(x)
g(xi) =

∑ g(xi)

|df/dxi|
(4)
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1.10.3 Theta Function

Consider the theta function θ(x − x′) which vanishes if x − x′ is negative and equals 1
if x− x′ is positive. Show that δ(x− x′) = d/dx θ(x− x′).

We can do this by observation,

d

dx
θ(x− x′) = 0; if x ̸= x′ (1)

Which is the definition of the delta function.
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1.10.4 Normal Modes, Continuous Space

A string is displaced as follows at t = 0:
ψ(x, 0) =

2xh

L
, 0 ≤ x ≤ L

2

=
2h

L
(L− x),

L

2
≤ x ≤ L

Show that

ψ(x, t) =

∞∑
m=1

sin
(mπx

L

)
cos(ωmt) ·

(
8h

π2m2

)
sin
(πm

2

)

Let’s start by calculating,

⟨m|ψ(0)⟩ =
(
2

L

)1/2 ∫ L

0

sin
(mπx

L

)
ψ(x, 0) dx (1)

=

(
2

L

)1/2
[∫ L/2

0

2h

L
x sin

(mπx
L

)
dx+

∫ L

L/2

2h

L
(L− x) sin

(mπx
L

)
dx

]
(2)

Integrating by parts, let’s look at the first term with u = x, v′ = sin
(mπx

L

)
,

2h

L

∫ L/2

0

x sin
(mπx

L

)
dx =

2h

L

[
− Lx

mπ
cos
(mπx

L

) ∣∣∣L/2

0
−
∫ L/2

0

− L

mπ
cos
(mπx

L

)
dx

]
(3)

=
2h

L

[
−L

2 cos(mπ/2)

2mπ
+

L2

m2π2
sin
(mπ

2

)]
(4)

We can do the same thing to the second term,∫ L

L/2

2h

L
(L− x) sin

(mπx
L

)
dx = −2hL

mπ
cos(mπ) +

2hL

2mπ
cos
(mπ

2

)
+

L2

m2π2
sin
(mπ

2

)
(5)

Substituting this into (1.10.59),

ψ(x, t) =

∞∑
m=1

(
2

L

)1/2

sin
(mπx

L

)
cos(ωmt) ⟨m|ψ(0)⟩ (6)

=

∞∑
m=1

sin
(mπx

L

)
cos(ωmt)

(
8h

m2π2

)
sin
(πm

2

)
(7)
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Chapter 2

Review of Classical Mechanics

2.1 The Principle of Least Action and Lagrangian Mechanics

2.1.1 Lagrangian of the Harmonic Oscillator

Consider the following system, called a harmonic oscillator. The block has a mass
m and lies on a frictionless surface. The spring has a force constant k. Write the
Lagrangian and get the equations of motion.

Because we’re only working in one-dimension, the kinetic energy,

T =
1

2
mẋ2 (1)

And the potential energy,

V =
1

2
kx2 (2)

Thus the Lagrangian, L = T − V ,

L =
1

2
mẋ2 − 1

2
kx2 (3)

We can use (2.1.11) to get the equation of motion,

mẍ = −kx (4)

ẍ = − k

m
x (5)

51
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2.1.2 Lagrangian of the Coupled-Mass Problem

Do the same for the coupled-mass problem discussed at the end of Section 1.8. Com-
pare the equations of motion with Eqs. (1.8.24) and (1.8.25).

Referencing fig. (1.5), the kinetic energy is what we would expect for two masses moving in
one dimension. For the potential energy, we need the spring potential from the wall to m1 and the
spring potential from the wall to m2 as well as the spring between the two.

T =
1

2
m(ẋ21 + ẋ22)

V =
1

2
k[x21 + x22 + (x2 − x1)

2]

(1)

L =
1

2
m(ẋ21 + ẋ22)−

1

2
k[x21 + x22 + (x2 − x1)

2] (2)

The equations of motion, {
mẍ1 = −2kx1 + kx2

mẍ2 = kx1 − 2kx2
(3)

Which is the same equation of motion we get from Newton’s laws (1.8.24),
ẍ1 = −2k

m
x1 +

k

m
x2

ẍ2 =
k

m
x1 −

2k

m
x2

(4)
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2.1.3 Lagrangian, Polar Coordinates

A particle of mass m moves in three dimensions under a potential V (r, θ, ϕ) = V (r).
Write its L and find the equations of motion.

We start with the Lagrangian we’re most familiar with,

L =
1

2
m(ẋ2 + ẏ2 + ż2)− V (r) (1)

However, we have to convert the kinetic energy portion into polar coordinates,
x = r cos(θ) sin(ϕ)

y = r sin(θ) sin(ϕ)

z = r cos(ϕ)

(2)

ẋ2 + ẏ2 + ż2 = ṙ2 + r2ϕ̇2 + r2θ̇2 sin2(ϕ) (3)

Thus, the Lagrangian and associated equations of motion,

L =
1

2
m(ṙ2 + r2ϕ̇2 + r2θ̇2 sin2(ϕ))− V (r) (4)

mr̈ = mrϕ̇2 +mrθ̇2 sin2(ϕ)− d

dt
V ′(r)

mϕ̈ = mr2θ̇2 sin(ϕ) cos(ϕ)

mθ̈ = 0

(5)
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2.2 The Electromagnetic Lagrangian
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2.3 The Two-Body Problem

2.3.1 Changing to Center of Mass Frame

Derive Eq.(2.3.6) from (2.3.5) by changing variables.

We want to go from

L =
1

2
m1| ˙⃗r1|2 +

1

2
m2| ˙⃗r2|2 − V (r⃗1 − r⃗2)

to

L =
1

2
(m1 +m2)| ˙⃗rcm|2 + 1

2

m1m2

m1 +m2
| ˙⃗r|2 − V (r⃗)

Let’s insert (2.3.3) and (2.3.4) into (2.3.5),

L =
1

2
m1

(
ṙ2cm +

2m2ṙrcm
m1 +m2

+
m2

2ṙ
2

(m1 +m2)2

)
+
1

2
m2

(
ṙ2cm − 2m1ṙrcm

m1 +m2
+

m2
1ṙ

2

(m1 +m2)2

)
−V (r⃗) (1)

which when reduced, gives us (2.3.6).
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2.4 How Smart Is a Particle



2.5. THE HAMILTONIAN FORMALISM 57

2.5 The Hamiltonian Formalism

2.5.1 Kinetic Energy

Show that if T =
∑

i

∑
j Tij(q)q̇iq̇j, where q̇’s are generalized velocities,

∑
i piq̇i = 2T .

We look at (2.5.1). Since we assume the potential is not dependant on q̇,

pi =
∂L

∂q̇i
=
∂T

∂q̇i
(1)

Let’s look at the derivative of T according to q̇i,

∂T

∂q̇i
=
∑
i

Tis(q)q̇i +
∑
j

Tsj(q)q̇j (2)

We then insert this,∑
i

piq̇i =
∑
i

∂T

∂q̇i
q̇i =

∑
is

Tis(q)q̇iq̇s +
∑
sj

Tsj(q)q̇sj̇ = 2T (3)
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2.5.2 Trajectory of the Oscillator

Using the conservation of energy, show that the trajectories in phase space for the
oscillator are ellipses of the form (x/a)2 + (p/b)2 = 1, where a2 = 2E/k and b2 = 2mE

The Hamiltonian is given by the total energy of the system,

H = E =
1

2
mẋ2 +

1

2
kx2 (1)

Then using (2.5.16) and (2.5.17),

=
1

2
m
( p
m

)2
+

1

2
kx2 =

x2k

2
+

p2

2m
(2)

x2k

2E
+

p2

2mE
= 1 (3)

which gives us an ellipses with a2 = 2E/k and b2 = 2mE.
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2.5.3 Hamiltonian of the Coupled-Mass Problem

Solve Exercise 2.1.2 using the Hamiltonian formalism

We can write the total energy,

E =
1

2
m(ẋ21 + ẋ22) +

1

2
k(x1 + x22 + (x2 − x1)

2) (1)

Because we want this in terms of momentum and position (p and q), we can use (2.5.16),

H =
1

2m
(p21 + p22) +

1

2
k(x21 + x22 + (x2 − x1)

2) (2)

We can easily see, 
p1
m

= ẋ1

p2
m

= ẋ2

(3)

Let’s then use Hamilton’s canonical equations (2.5.12) to get the equations of motion,

− ∂H

∂x1
= −2k1 + kx2 = mẍ1 (4)

− ∂H

∂x2
= kx1 − 2kx2 = mẍ2 (5)
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2.5.4 Hamiltonian of the Center of Mass Problem

Show that H corresponding to L in Eq.(2.3.6) is H = |p⃗cm|2/2M + |p⃗|2/2µ+V (r⃗), where
M is the total mass, µ is the reduced mass, p⃗cm and p⃗ are the momenta conjugate to
r⃗cm and r⃗, respectively.

Equation (2.3.6),

L =
1

2
(m1 +m2)| ˙⃗rcm|2 + 1

2

m1m2

m1 +m2
| ˙⃗r|2 − V (r⃗)

Let’s use (2.5.8),
H = pṙ + pcmṙcm − L (1)

We then use (2.5.1), {
p = µṙ

pcm =Mṙcm
(2)

Inserting this and making the changes to the Lagrangian,

H =
p2

µ
+
p2cm
M

− p2cm
2M

− p2

2µ
+ V (r⃗) (3)

=
p2cm
2M

+
p2

2µ
+ V (r⃗) (4)
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2.6 The Electromagnetic Force in the Hamiltonian Scheme



62 CHAPTER 2. REVIEW OF CLASSICAL MECHANICS

2.7 Cyclic Coordinates, Poisson Brackets, and Canonical
Transformations

2.7.1 Poisson Brackets

Show that... Note the similarity between the above and Eqs.(1.5.10) and (1.5.11) for
commutators

{ω, λ} = −{λ, ω}

For all of these, let’s work over a single indices,

{ω, λ} =
∂ω

∂q

∂λ

∂p
− ∂ω

∂p

∂λ

∂q
(1)

= −
(
∂ω

∂p

∂λ

∂q
− ∂ω

∂q

∂λ

∂p

)
= −{λ, ω} (2)

{ω, λ+ σ} = {ω, λ}+ {ω, σ}

{ω, λ+ σ} =
∂ω

∂q

∂(λ+ σ)

∂p
− ∂ω

∂p

∂(λ+ σ)

∂q
(3)

=
∂ω

∂q

(
∂λ

∂p
+
∂σ

∂p

)
− ∂ω

∂p

(
∂λ

∂q
+
∂σ

∂q

)
(4)

=
∂ω

∂q

∂λ

∂p
− ∂ω

∂p

∂λ

∂q
+
∂ω

∂q

∂σ

∂p
− ∂ω

∂p

∂σ

∂q
= {ω, λ}+ {ω, σ} (5)

{ω, λσ} = {ω, λ}σ + λ{ω, σ}

∂ω

∂q

∂(λσ)

∂p
− ∂ω

∂p

∂(λσ)

∂q
=
∂ω

∂q

(
λ
∂σ

∂p
+
∂λ

∂p
σ

)
− ∂ω

∂p

(
λ
∂σ

∂q
− ∂λ

∂q
σ

)
(6)

= λ

(
∂ω

∂q

∂σ

∂p
− ∂ω

∂p

∂σ

∂q

)
+

(
∂ω

∂q

∂λ

∂p
− ∂ω

∂p

∂λ

∂q

)
σ = {ω, λ}σ + λ{ω, σ} (7)



2.7. CYCLIC COORDINATES, POISSON BRACKETS, AND CANONICAL TRANSFORMATIONS63

2.7.2 Canonical Poisson Bracket Relations

Verify Eqs.(2.7.4) and (2.7.5)

Start with {qi, qj} = {pi, pj} = 0,

{qi, qj} =
∂qi
∂qi

∂qj
∂pi

− ∂qi
∂pi

∂qj
∂qi

+
∂qi
∂qj

∂qj
∂pj

− ∂qi
∂pj

∂qj
∂qi

(1)

= 1 · 0− 0 · δij + δij · 0− 0 · 1 = 0 (2)

{pi, pj} =
∂pi
∂qi

∂pj
∂pi

− ∂pi
∂pi

∂pj
∂qi

+
∂pi
∂qj

∂pj
∂pj

− ∂pi
∂pj

∂pj
∂qj

(3)

= 0 · δij − 1 · 0 + 0 · 1− δij · 0 = 0 (4)

Let’s look at {qi, pj} = δij , ∑
k

(
∂qi
∂qk

∂pj
∂pk

− ∂qi
∂pk

∂pj
∂pk

)
(5)

= δikδkj = δij (6)

Show q̇i = {qi,H }. We can use (2.5.12),

∂qi
∂qi

∂H

∂pi
− ∂qi
∂pi

∂H

∂qi
= q̇i (7)

∂pi
∂qi

∂H

∂pi
− ∂pi
∂pi

∂H

∂qi
= ṗi (8)

Consider a problem in two dimensions given by H = p2x + p2y + ax2 + by2. Argue that if
a = b, {lz,H } must vanish. Verify by explicit computation.

For reference, lz, or a rotation around the z-axis,

lz = pxy − pyx (9)

If a = b, the Hamiltonian becomes,

H = p2x + p2y + ax2 + ay2 (10)

which is symmetric about the z-axis.

{lz,H } = −py · 2px − y · 2ax+ px · 2py − (−x) · 2ay = 0 (11)
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2.7.3 Canonical Poisson Bracket Proofs

Fill in the missing steps leading to Eq. (2.7.18) starting from Eq. (2.7.14).

We start with (2.7.14),

˙̄qj =
∑
i

(
∂q̄j
∂qi

∂H

∂pi
− ∂q̄j
∂pi

∂H

∂qi

)
(1)

We can then follow the text and jump to (2.7.16),

=
∑
k

(
∂H

∂q̄k
{q̄j , q̄k}+

∂H

∂p̄k
{q̄j , p̄k}

)
(2)

We compare this to (2.7.10), which implies,{
{q̄j , q̄k} = 0

{q̄j , p̄k} = δjk
(3)

Similarly, if we compare (2.7.17) to (2.7.10),

− ∂H

∂q̄j
=
∑
k

(
∂H

∂q̄k
{p̄j , q̄k}+

∂H

∂p̄k
{p̄j , p̄k}

)
(4)

which implies, {
{p̄j , q̄k} = −δjk
{p̄j , p̄k} = 0

(5)



2.7. CYCLIC COORDINATES, POISSON BRACKETS, AND CANONICAL TRANSFORMATIONS65

2.7.4 Canonical Transformation Example

Verify that the change to a rotated frame

x̄ = x cos(θ)− y sin(θ)

ȳ = x sin(θ) + y cos(θ)

p̄x = px cos(θ)− py sin(θ)

p̄y = px sin(θ) + py cos(θ)

is a canonical transformation.

{x̄, ȳ} = 0 (1)

{p̄x, p̄y} = 0 (2)

{x̄, p̄x} = cos2(θ) + sin2(θ) = 1 (3)

{ȳ, p̄y} = sin2(θ) + cos2(θ) = 1 (4)

{x̄, p̄y} = cos(θ) sin(θ)− sin(θ) cos(θ) = 0 (5)

{ȳ, p̄x} = sin(θ) cos(θ)− cos(θ) sin(θ) = 0 (6)
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2.7.5 Canonical Transformation Example

Show that the polar variables ρ = (x2 + y2)1/2, ϕ = tan−1(y/x)

pρ = êρ · p⃗ =
xpx + ypy
(x2 + y2)1/2

, pϕ = xpy − ypx(= lz)

are canonical. (êρ is the unit vector in the radial direction.)

Since there are no momentum terms,

{ρ, ϕ} = 0 (1)

{pρ, pϕ} = 0 (2)

{ρ, pρ} =
(x2 + y2)(x2 + y2)1/2

(x2 + y2)1/2(x2 + y2)
= 1 (3)

{ϕ, pϕ} =
x2 + y2

x2 + y2
= 1 (4)

{ρ, pϕ} = {ϕ, pρ} = 0 (5)
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2.7.6 Canonical Transformation Example

Verify that the change from the variables r⃗1, r⃗2, p⃗1, p⃗2 to r⃗cm, p⃗cm, r⃗, p⃗ is a canonical
transformation. (See Exercise 2.5.4)

For reference, removing arrows because I don’t want to type them out,

r = r1 − r2, p =
m1m2

m1 +m2
(ṙ1 − ṙ2) =

m2p1 −m1p2
m1 +m2

(1)

rcm =
m1r1 +m2r2
m1 +m2

, pcm = (m1 +m2)ṙcm = p1 + p2 (2)

Because they don’t have any momentum (or position terms),

{r, rcm} = 0 (3)

{p, pcm} = 0 (4)

{r, p} =
m1 +m2

m1 +m2
= 1 (5)

{r, pcm} = 1− 1 = 0 (6)

{rcm, p} =
m1

m1 +m2

m2

m1 +m2
+

m2

m1 +m2

−m1

m1 +m2
= 0 (7)

{rcm, pcm} =
m1 +m2

m1 +m2
= 1 (8)
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2.7.7 Canonical Transformation Example

Verify that

q̄ = ln(q−1 sin(p))

p̄ = q cot(p)

is a canonical transformation

Because we only have one set of variables, we already know {q̄, q̄} = {p̄, p̄} = 0, so we only need
to show,

{q̄, p̄} =
1− cos2(p)

sin2(p)
= 1 (1)
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2.7.8 Canonical Transformation Momentum

We would like to derive here Eq.(2.7.9), which gives the transformation of the momenta
under a coordinate transformation in configuration space:

qi → q̄i(q1, ..., qn)

Argue that if we invert the above equation to get q = q(q̄), we can derive the following
counterpart of Eq. (2.7.7):

q̇i =
∑
j

∂qi
∂q̄j

˙̄qj

We start by looking at Eq.(2.7.7),

˙̄qi =
∑
j

(
∂q̄i
∂qj

)
q̇j

˙̄qi

(
∂q̄i
∂qj

)−1

= q̇j (1)

q̇i =
∑
j

∂qi
∂q̄j

˙̄qj (2)

Show from the above that

(
∂q̇i
∂ ˙̄qj

)
q̄

=
∂qi
∂q̄j

Inserting qi, (
∂q̇i
∂ ˙̄qj

)
q̄

=
∂

∂ ˙̄qj

∑
j

∂qi
∂q̄j

˙̄qj

 (3)

Taking the derivative is fairly straightforward,

=
∑
j

∂qi
∂q̄j

(4)
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Now calculate

p̄i =

[
∂L (q̄, ˙̄q)

∂ ˙̄qi

]
q̄

=

[
∂L (q, q̇)

∂ ˙̄qi

]
q̄

Use the chain rule and the fact that q = q(q̄) and not q(q̄, ˙̄q) to derive Eq.(2.7.9).
Using the chain rule,

p̄i =
∂L (q̄, ˙̄q

∂ ˙̄qi
=
∂L

∂q̇

∂q̇

∂ ˙̄qi
(5)

Now using the result from (2),

=
∂L

∂q̇

∂q

∂q̄
(6)

And (2.5.1),

= p
∂q

∂q̄
=
∑
j

(
∂qj
∂q̄i

)
pj (7)

Verify, by calculating the PB in Eq. (2.7.18), that the point transformation is canonical

{q̄, p̄} =
∂q̄

∂q

∂p̄

∂p
− ∂q̄

∂p

∂p̄

∂q
=
∂q̄

∂q

∂q

∂q̄
− 0 = 1 (8)
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2.7.9 Invariant Poisson Bracket

Verify Eq.(2.7.19) by direct computation. Use the chain rule to go from q, p derivatives
to q̄, p̄ derivatives. Collect terms that represent PB of the latter.

We want to show,

{ω, σ}q,p = {ω, σ}q̄,p̄

We start by writing out the left side,

{ω, σ}q,p =
∂ω

∂q

∂σ

∂p
− ∂ω

∂p

∂σ

∂q
(1)

Using the chain rule,

=
∂ω

∂q̄

∂σ

∂p̄

∂q̄

∂q

∂p̄

∂p
− ∂ω

∂p̄

∂σ

∂q̄

∂p̄

∂p

∂q̄

∂q
= {ω, σ}q̄,p̄ · {q̄, p̄} (2)

which using (2.7.18), gives us what we want,

= {ω, σ}q̄,p̄ (3)
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2.8 Symmetries and their Consequences

2.8.1 Infinitesimal Translation

Show that p = p1+p2, the total momentum, is the generator of infinitesimal translations
for a two-particle systems.

Looking at (2.8.3), let’s insert p as the generator,

x̄ = x+ ϵ
∂p

∂px
= x+ ϵ (1)

ȳ = y + ϵ
∂p

∂py
= y + ϵ (2)

p̄x = px − ϵ
∂p

∂x
= px (3)

p̄y = py − ϵ
∂p

∂y
= py (4)
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2.8.2 Infinitesimal Transformation and Canonical Transformation

Verify that the infinitesimal transformation generated by any dynamical variable g is
a canonical transformation. (Hint: Work, as usual, to first order in ϵ)

Let’s insert (2.8.3) into (2.7.18),

{q̄, p̄} =

(
∂q

∂q
+ ϵ

∂2g

∂p∂q

)(
∂p

∂p
− ϵ

∂2g

∂p∂q

)
−
(
∂q

∂p
+ ϵ

∂2g

∂2p

)(
∂p

∂q
− ϵ

∂2g

∂q2

)
= 1 (1)
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2.8.3 Non-canonical Transformation

Consider

H =
p2x + p2y
2m

+
1

2
mω2(x2 + y2)

whose invariance under the rotation of the coordinates and momenta leads to the
conservation of lz. But H is also invariant under the rotation of just the coordinates.
Verify that this is a noncanonical transformation. Convince yourself that in this case it
is not possible to write δH as ϵ{H , g} for any g, i.e., that no conservation law follows.

Under rotation of just the coordinates,{
x̄ = x cos(θ)− y sin(θ)

ȳ = x sin(θ) + y cos(θ)
(1)

{
p̄x = px

p̄y = py
(2)

Let’s now look at how they behave with Poisson Brackets,

{x̄, p̄x} = cos(θ) (3)

{ȳ, p̄y} = cos(θ) (4)

{x̄, p̄y} = − sin(θ) (5)

{ȳ, p̄x} = sin(θ) (6)

Which do not follow the canonical transformation rules. Because of this, {g,H } is also not
conserved.
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2.8.4 Generator of Infinitesimal Rotation in Phase Space

Consider H = 1/2p2 + 1/2x2, which is invariant under infinitesimal rotations in phase
space(the x − p plane). Find the generator of this transformation(after verifying that
is is canonical). (You could have guessed the answer based on Exercise 2.5.2).

Here, our transformation in phase space looks like,{
x̄ = x+ ϵp

p̄ = p− ϵx
(1)

To find the generator, we want something that satisfies,
∂g

∂p
= p

∂g

∂x
= x

(2)

The solution to this is,

g =
1

2
(p2 + x2) (3)

We can easily convince ourselves that {g,H } = 0.
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2.8.5 Noncanonical Transformation

Why is it that a noncanonical transformation that leaves H invariant does not map
a solution into another? Or, in view of the discussions on consequence II, why is it
that an experiment and its transformed version do not give the same result when the
transformation that leaves H invariant is not canonical? It is best to consider an
example. Consider the potential given in Exercise 2.8.3. Suppose I release a particle
at (x = a, y = 0) with (px = b, py = 0) and you release one in the transformed state in
which (x = 0, y = a) and (px = b, py = 0), i.e., you rotate the coordinates but not the
momenta. This is a noncanonical transformation that leaves H invariant. Convince
yourself that at later times the states of the two particles are not related by the same
transformation. Try to understand what goes wrong in the general case.

In the transformed case, {
x̄ = x cos(θ)− y sin(θ)

ȳ = x sin(θ)− x cos(θ)
(1)

If we then look at how these equations evolve in time,{
ẍ = mω2x

ÿ = mω2y
(2)

{
¨̄x = mω2(x cos(θ)− y sin(θ))

¨̄y = mω2(x sin(θ) + y cos(θ))
(3)

I think this question is asking why we care about canonical transformations. Canonical trans-
formations tell us the equations of motion don’t care about how coordinates are defined in space.
In this example, because the transformation is not canonical, the starting position does matter,
which means that even though the Hamiltonian looks the same, it acts differently on the two cases.
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2.8.6 Action of the Classical Path

Show that ∂Scl/∂xf = p(tf ).

We start by multiplying by unity,

∂Scl

∂xf

∂tf
∂tf

=
∂Scl

∂tf

∂tf
∂xf

(1)

Then using (2.8.18),

= −H (tf )
∂tf
∂xf

(2)

Using (2.5.12),
= ṗ(xf )∂tf = p(tf ) (3)
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2.8.7 Harmonic Oscillator, Classical Path

Consider the harmonic oscillator, for which the general solution is

x(t) = A cos(ωt) +B sin(ωt)

Express the energy in terms of A and B and note that it does not depend on time.
Now choose A and B such that x(0) = x1 and x(T ) = x2. Write down the energy in
terms of x1, x2, and T . Show that the action for the trajectory connecting x1 and x2 is

Scl(x1, x2, T ) =
mω

2 sin(ωT )
[(x21 + x22) cos(ωT )− 2x1x2]

Verify that ∂Scl/∂T = −E

We know the energy of the harmonic oscillator is,

E =
1

2
mẋ2 +

1

2
kx2, k = mω2 (1)

Inserting x(t) into this,

E =
1

2
mω2(A2 +B2) (2)

At t = 0,
x(0) = A = x1 (3)

At t = T ,
x(T ) = A cos(ωT ) +B sin(ωT ) = x2 (4)

B =
x2 − x1 cos(ωT )

sin(ωT )
(5)

E =
1

2
mω2

(
x21 +

(
x2 − x1 cos(ωT )

sin(ωT )

))
(6)

To find the action of the classical path, we need the Lagrangian,

L =
1

2
mω2[A2(sin2(ωt)− cos2(ωt)) +B2(cos2(ωt)− sin2(ωt))− 4AB sin(ωt) cos(ωt)] (7)

We want to rewrite this in terms of cos(2ωt) for easier integration,

=
1

2
mω2[−A2 cos(2ωt) +B2 cos(2ωt)− 4AB sin(ωt) cos(ωt)] (8)

Integrating, we get the solution we want,∫ T

0

L =
mω

2 sin(ωt)
[(x21 + x22) cos(ωT )− 2x1x2] (9)

Of we take the derivative according to T ,

∂Scl

∂T
= −mω

2

2

(
x21 + x22 − 2x1x2 cos(ωT )

sin2(ωT )

)
(10)

which simplifies to our expression for the total energy.


	Mathematical Introduction
	Linear Vector Spaces: Basics
	Vector Proofs
	Vector Space Example
	Functions as Vectors
	Linear Independence
	Linear Independence

	Inner Product Spaces
	Dual Spaces and the Dirac Notation
	Gram-Schmidt Application
	Another Gram-Schmidt Application
	Schwarz Equality
	Triangle Inequality

	Subspaces
	Orthogonal Subspace
	Vector Space Addition

	Linear Operators
	Matrix Elements of Linear Operators
	Operator Action
	Hermitian Operators
	Unitary Operators
	Determinant
	Rotational Matrix Unitarity
	Unitary Matrices

	Active and Passive Transformations
	Matrix Trace
	Determinant of a Unitary Change of Basis

	The Eigenvalue Problem
	An Eigenproblem Example
	Eigenvalue Problem
	Eigenvalue Problem
	Eigenvalue Problem
	Eigenvalue Problem
	Determinant and Eigenvalues
	Eigenvalue Problem, Hermitian Matrix
	Eigenvalue of Hermitian Matrices
	Moment of Inertia
	Simultaneous Diagonalization
	Coupled Mass
	Coupled Mass

	Functions of Operators and Related Concepts
	Hermitian Operator Power Series
	Operator Analogy of Complex Numbers
	Determinant of a Function of Operators

	Generalization to Infinite Dimensions
	Delta Function
	Delta Function
	Theta Function
	Normal Modes, Continuous Space


	Review of Classical Mechanics
	The Principle of Least Action and Lagrangian Mechanics
	Lagrangian of the Harmonic Oscillator
	Lagrangian of the Coupled-Mass Problem
	Lagrangian, Polar Coordinates

	The Electromagnetic Lagrangian
	The Two-Body Problem
	Changing to Center of Mass Frame

	How Smart Is a Particle
	The Hamiltonian Formalism
	Kinetic Energy
	Trajectory of the Oscillator
	Hamiltonian of the Coupled-Mass Problem
	Hamiltonian of the Center of Mass Problem

	The Electromagnetic Force in the Hamiltonian Scheme
	Cyclic Coordinates, Poisson Brackets, and Canonical Transformations
	Poisson Brackets
	Canonical Poisson Bracket Relations
	Canonical Poisson Bracket Proofs
	Canonical Transformation Example
	Canonical Transformation Example
	Canonical Transformation Example
	Canonical Transformation Example
	Canonical Transformation Momentum
	Invariant Poisson Bracket

	Symmetries and their Consequences
	Infinitesimal Translation
	Infinitesimal Transformation and Canonical Transformation
	Non-canonical Transformation
	Generator of Infinitesimal Rotation in Phase Space
	Noncanonical Transformation
	Action of the Classical Path
	Harmonic Oscillator, Classical Path



