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Chapter 1

Mathematical Introduction

1.1 Linear Vector Spaces: Basics

1.1.1 Vector Space Axioms

Verify these claims. For the first consider |0〉 + |0′〉 and use the advertised properties
of the two null vectors in turn. For the second start with |0〉 = (0 + 1) |V 〉 + |−V 〉.
For the third, begin with |V 〉 + (− |V 〉) = 0 |V 〉 = |0〉. For the last, let |W 〉 also satisfy
|V 〉+ |W 〉 = |0〉. Since |0〉 is unique, this means |V 〉+ |W 〉 = |V 〉+ |−V 〉. Take it from here.

Null Vector is Unique

We first assume that |0〉 and |0′〉 are unique null vectors. Thus, if we add them,

|0〉+ |0′〉 = |0〉

|0〉+ |0′〉 = |0′〉

Our two results have to be the same, so |0〉 = |0′〉.

Scalar Product of 0

As Shankar suggests,

|0〉 = (0 + 1) |V 〉+ |−V 〉

= 0 |V 〉+ (|V 〉+ |−V 〉)

Now, using the inverse property,

|V 〉+ |−V 〉 = |0〉

we get

0 |V 〉+ |0〉 = 0 |V 〉

5
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Inverse Vector

We start as Shankar suggests,

|V 〉+ (− |V 〉) = |0〉

To both sides, we add |−V 〉,

|V 〉+ |−V 〉+ (− |V 〉) = |0〉+ |−V 〉

|0〉+ (− |V 〉) = |0〉+ |−V 〉

− |V 〉 = |−V 〉

Unique Additive Inverse

As usual, we start by assuming the additive inverse is not unique,

|V 〉+ |W 〉 = |0〉

We then break up the right side using the normal inverse,

|V 〉+ |W 〉 = |V 〉+ |−V 〉

Matching terms,

|W 〉 = |−V 〉
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1.1.2 Vector Example

Consider the set of all entities of the form (a, b, c) where the entries are real numbers.
Addition and scalar multiplication are defined as follows:

(a, b, c) + (d, e, f) = (a+ d, b+ e, c+ f)

α(a, b, c) = (αa, αb, αc)

Write down the null vector and inverse of (a, b, c). Show that vectors of the form (a, b, 1)
do not form a vector space.

We first write a sample vector,

|V 〉 = (a, b, c)

By inspection, we can see the null vector and inverse,

|0〉 = (0, 0, 0)

|−V 〉 = (−a,−b,−c)

To show that vectors (a, b, 1) do not form a vector space, it is easiest to show that it does not
follow closure. To do this,

|V 〉 = (a, b, 1)

|W 〉 = (d, e, 1)

|V 〉+ |W 〉 = (a+ d, b+ e, 2)

which does not follow closure since it does not take the form (x, y, 1). We could show that it does
not follow certain other conditions (no null vector, no inverse).
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1.1.3 More Vector Spaces

Do functions that vanish at the end points x = 0 and x = L form a vector space? How
about periodic functions obeying f(0) = f(L)? How about functions that obey f(0) = 4?
If the functions do not qualify, list the things that go wrong.

Only the last is not a vector space since it does not follow closure, there is no null vector, and
there is no inverse in the vector space.
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1.1.4 Linear Independent Vectors

Consider three elements from the vector space of real 2x2 matrices:

|1〉 =

[
0 1
0 0

]
; |2〉 =

[
1 1
0 1

]
; |3〉 =

[
−2 −1
0 −2

]
Are they linearly independent? Support your answer with details. (Notice we are
calling these matrices vectors and using kets to represent them to emphasize their role
as elements of a vector space.)

We can determine if these elements are linearly independent by,

a |1〉+ b |2〉+ c |3〉 = 0

If we can find (a, b, c) that are not all 0, the elements are linearly dependant. We get the
equations, 

0 + b− 2c = 0

a+ b− c = 0

Solving, we get ab
c

 =

−1
2
1


Since we found elements that are not the trivial solution, these elements are linearly dependant.
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1.1.5 Linear Dependent

Show that the following row vectors are linearly dependent: (1, 1, 0), (1, 0, 1), and (3, 2, 1).
Show the opposite for (1, 1, 0), (1, 0, 1), and (0, 1, 1).

For the first, we need to solve

a

1
1
0

+ b

1
0
1

+ c

3
2
1

 =

0
0
0


We can find a non-trivial solution, ab

c

 =

−2
−1
1


For the second set,

a

1
1
0

+ b

1
0
1

+ c

0
1
1

 =

0
0
0


There is no solution other than the trivial solution, so we have a linear independent set.
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1.2 Inner Product Spaces
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1.3 Dual Spaces and the Dirac notation

1.3.1 Orthonormal Basis

Form an orthonormal basis in two dimensions starting with ~A = 3~i+ 4~j and ~B = 2~i− 6~j.
Can you generate another orthonormal basis starting with these two vectors? If so,
produce another.

We can get one orthonormal basis by using Gram-Schmidt on |A〉.

|1〉 =
1

5
(3, 4)

|2′〉 = (1,−3)− 1

25
(3, 4)

(
3
4

)
(1,−3)

= (1,−3) +
9

25
(3, 4)

|2〉 =
1

5
(4,−3)

We can get a second orthonormal basis by starting with |B〉,

|1〉 =
1√
10

(1,−3)

|2′〉 = (3, 4)− 1

10
(1,−3)

(
1
−3

)
(3, 4)

= (3, 4) +
9

10
(1,−3)

|2〉 =
1√
10

(3, 1)
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1.3.2 Gram-Schmidt

Show how to go from the basis

|I〉 =

3
0
0

 ; |II〉 =

0
1
2

 ; |III〉 =

0
2
5


to the orthonormal basis

|1〉 =

1
0
0

 ; |2〉 =

 0

1/
√

5

2/
√

5

 ; |3〉 =

 0

−2/
√

5

1/
√

5



We start by normalizing |I〉,

|1〉 =

1
0
0


The second ket,

|2′〉 =

0
1
2

−
1

0
0

 [1 0 0
] 0

1
2



=

0
1
2

− 0

Normalizing,

|2〉 =
1√
5

0
1
2


The third vector,

|3′〉 =

0
2
5

− 1

5

0
1
2

 [0 1 2
] 0

2
5

−
1

0
0

 [1 0 0
] 0

2
5



=

0
2
5

− 12

5

0
1
2

− 0
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|3′〉 =

 0
−2
1


Normalizing,

|3〉 =
1√
5

 0
−2
1
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1.3.3 Schwarz Inequality

When will this equality be satisfied? Does this agree with your experience with arrows?

The equality we are looking at is the Schwarz inequality,

〈V |V 〉 ≥ 〈W |V 〉 〈V |W 〉
|W |2

We see that the two sides are equal if |W 〉 = a |V 〉, i.e., if |W 〉 is a re-scaling of |V 〉.

〈V |V 〉 = |V |2 =
a∗ 〈V |V 〉 a 〈V |V 〉

a2|V |2
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1.3.4 Triangle Inequality

Prove the triangle inequality starting with |V + W |2. You must use <〈V |W 〉 ≤ | 〈V |W 〉
and the Schwarz inequality. Show that the final inequality becomes an equality only
if |V 〉 = a |W 〉 where a is a real positive scalar.

We start by finding the length of |V 〉+ |W 〉,

|V +W |2 = 〈V +W |V +W 〉

= 〈V |V 〉+ 〈W |V 〉+ 〈V |W 〉+ 〈W |W 〉

= 〈V |V 〉+ 〈V |W 〉∗ + 〈V |W 〉+ 〈W |W 〉

Using the Schwarz inequality,

≤ |V |2 + 2 〈V |W 〉+ |W |2

≤ |V |2 + 2|V ||W |+ |W |2

= (|V |+ |W |)2

Taking the square root of both sides,

|V +W | ≤ |V |+ |W |

To show the equality, we go back to

|V +W |2 = 〈V |V 〉+ 〈W |V 〉+ 〈V |W 〉+ 〈W |W 〉

To make this an equality, we want the two terms to be equal, and we want to get

= (|V |+ |W |)2

This holds if 〈W |V 〉 = 〈V |W 〉, which implies |V 〉 = a |W 〉
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1.4 Subspaces

1.4.1 Orthogonal Vector Subspace

In a space V n, prove that the set of all vectors {|V 1
⊥〉 , |V 2

⊥〉 , ...}, orthogonal to any
|V 〉 6= |0〉, form a subspace V n−1.

One way to think about this is imagining a three-dimensional vector space. If we choose some
vector |V 〉, which we’ll say is (0, 0, 1), we can convince ourselves that the orthogonal vectors form
a plane. We then have a two-dimensional vector space whose orthonormal basis is given by (1, 0)
and (0, 1). We can further convince ourselves that this two-dimensional vector space is a subspace
of the three-dimensional vector space.
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1.4.2 Adding Vector Spaces

Suppose V n1
1 and V n2

2 are two subspaces such that any element of V1 is orthogonal to
any element of V2. Show that the dimensionality of V1

⊕
V2 is n1 +n2. (Hint: Theorem

4).

The aforementioned theorem 4: The dimensionality of a space equals n⊥, the maximum number
of mutually orthogonal vectors in it.

At first glance, dim(V1 + V2) = n1 + n2 + nelse, where nelse is made up of vectors formed by
combining V1 and V2. However, there are no new vectors since all elements of V1 are orthogonal
to a vector in V2 and vice-versa. What this means is that these new vectors can be described as a
linear composition of the basis of V1 or V2.
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1.5 Linear Operators
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1.6 Matrix Elements of Linear Operators

1.6.1 Sample Operator

An operator Ω is given by the matrix 0 0 1
1 0 0
0 1 0


What is its action?

Let’s act our sample operator on a basis,

|1〉 =

1
0
0

 ; |2〉 =

0
1
0

 ; |3〉 =

0
0
1


We get, 

Ω |1〉 = |2〉

Ω |2〉 = |3〉

Ω |3〉 = |1〉

which we recognize as permutation.
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1.6.2 Hermitian Operators

Given Ω and Λ are Hermitian what can you say about

ΩΛ

Taking the adjoint of ΩΛ,

(ΩΛ)† = Λ†Ω†

Using the Hermitian condition (1.8),

= ΛΩ

which is not Hermitian.

ΩΛ + ΛΩ

Using the previous part,

ΩΛ + ΛΩ = (ΛΩ)† + (ΩΛ)†

We can rearrange the order of sums (but not products),

(ΩΛ)† + (ΛΩ)† = (ΩΛ + ΛΩ)†

which is Hermitian.

[Ω,Λ]

Taking the adjoint,

[Ω,Λ]† = (ΩΛ)† − (ΛΩ)†

= Λ†Ω† − Ω†Λ† = −[Ω†,Λ†]

which is anti-Hermitian.
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i[Ω,Λ]

Taking the adjoint,

(i[Ω,Λ])† = −i(ΩΛ− ΛΩ)†

Using part c,

= i[Ω,Λ]

which is Hermitian.
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1.6.3 Unitary Operators

Show that a product of unitary operators is unitary

Say we have two unitary operators, U and V . Now, let’s perform the operation,

(UV )(UV )†

= UV V †U†

Since V is unitary, the middle part goes to identity,

= UIU† = UU† = I
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1.6.4 Unitary Operator Determinant

It is assumed that you know (1) what a determinant is, (2) that det ΩT = det Ω (T
denotes transpose), (3) that the determinant of a product of matrices is the product
of the determinants. [If you do not, verify these properties for a two-dimensional case

Ω =

(
α β
γ δ

)
with det Ω = (αδ − βγ).] Prove that the determinant of a unitary matrix is a complex
number of unit modulus.

We’ll start with the unitary condition (1.9),

ΩΩ† = I

We take the determinant of both sides and use the third property,

det Ω · det Ω† = det I

We know that the determinant of identity is 1,

det Ω · det Ω† = 1

Using the second condition,

|det Ω|2 = 1
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1.6.5 Unitary Operator

Verify that R

(
1

2
πî

)
is unitary (orthogonal) by examining its matrix.

As a reminder, we’re going to call this operator Rx,

Rx =

1 0 0
0 0 −1
0 1 0


Not only is the rotation matrix unitary (as we will show), it is also Hermitian,

RxR
†
x =

1 0 0
0 0 −1
0 1 0

1 0 0
0 0 −1
0 1 0

 =

1 0 0
0 1 0
0 0 1

 = I
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1.6.6 Unitary Matrices

Verify that the following matrices are unitary. Verify that the determinant is of the
form exp(iθ) in each case. Are any of the above matrices Hermitian?

Ω =
1

21/2

[
1 i
i 1

]
We can verify by brute force,

ΩΩ† =


1√
2

i√
2

i√
2

1√
2




1√
2

−i√
2

−i√
2

1√
2



=


1

2
+

1

2

−i
2

+
i

2

i

2
− i

2

1

2
+

1

2

 = I

det Ω =
1

2
− i2

2
=

1

2
+

1

2
= 1 = exp(0)

This matrix is not Hermitian.

Λ =
1

2

[
1 + i 1− i
1− i 1 + i

]
Again, using brute force,

ΛΛ† =
1

4

[
1 + i 1− i
1− i 1 + i

] [
1− i 1 + i
1 + i 1− i

]
= I

det Λ =
1

4
[(1 + i)2 − (1− i)2] =

1

4
[1 + 2i− 1− 1 + 2i+ 1] = i = exp

(
i
π

2

)
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1.7 Active and Passive Transformations

1.7.1 Trace

The trace of a matrix is defined to be the sum of its diagonal matrix elements

Tr(Ω) =
∑
i

Ωii

Show that

Tr(ΩΛ)=Tr(ΛΩ)

We start by expanding out the trace. Then, we know that we only care about the diagonal
elements,

Tr(ΩΛ) =
∑
i

(ΩΛ)ii =
∑
i

ΩiiΛii

Since we can rearrange scalar terms for free, we get the result we want,

=
∑
i

ΛiiΩii =
∑
i

(ΛΩ)ii = Tr(ΛΩ)

Tr(ΩΛθ)=Tr(ΛθΩ)=Tr(θΩΛ) (The permutations are cyclic)

We want to group operators and then use the property found in the previous part,

Tr(ΩΛθ) = Tr(Ω(Λθ)) = Tr(ΛθΩ)

Tr(ΛθΩ) = Tr(Λ(θΩ)) = Tr(θΩΛ)

The trace of an operator is unaffected by a unitary change of basis |i〉 → U |i〉. [Equiv-
alently, show Tr(Ω) = Tr(U†ΩU).]

We’ll start with the right-hand side of that equation. Using the permutation rule,

Tr(U†ΩU) = Tr(ΩU†U) = Tr(ΩI) = Tr(Ω)
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1.7.2 Unitary Change of Basis, Determinant

Show that the determinant of a matrix is unaffected by a unitary change of basis.
[Equivalently show det Ω = det(U†ΩU)]

We start with the right side of the equation. We can break up the individual parts of the
determinant,

det(U†ΩU) = det(U†) det(Ω) det(U)

Since each of these are scalars, we can rearrange them freely and then recombine them,

= det(Ω) det(U†) det(U) = det(Ω) det(I) = det(Ω)
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1.8 The Eigenvalue Problem

1.8.1 Eigenvalues

Find the eigenvalues and normalized eigenvectors of the matrix

Ω =

1 3 1
0 2 0
0 1 4



The characteristic equation,

det(Ω− ωI) = det

1− ω 3 1
0 2− ω 0
0 1 4− ω


= (1− ω)(2− ω)(4− ω)

Our eigenvalues are ω = 1, 2, 4.
For |ω = 1〉, 0 3 1

0 1 0
0 1 3

ab
c

 =

0
0
0



|ω = 1〉 =

1
0
0


For |ω = 2〉, −1 3 1

0 0 0
0 1 2

ab
c

 =

0
0
0



|ω = 2〉 =
1√
30

−5
−2
1


For |ω = 4〉, −3 3 1

0 −2 0
0 1 0

ab
c

 =

0
0
0



|ω = 4〉 =
1√
3

1
0
3
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Is the matrix Hermitian? Are the eigenvectors orthogonal?

By inspection, the matrix is not Hermitian nor are the eigenvectors orthogonal. Note that we
can’t use Gram-Schmidt here since that changes the vector.
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1.8.2 Eigenvectors

Consider the matrix

Ω =

0 0 1
0 0 0
1 0 0


Is it Hermitian?

Yes.

Find its eigenvalues and eigenvectors

The characteristic equation,

det(Ω− ωI) = det

−ω 0 1
0 −ω 0
1 0 −ω



= −ω3 + 1(ω) = ω(ω2 − 1)

The eigenvalues are ω = −1, 0, 1.
For |ω = −1〉, 1 0 1

0 1 0
1 0 1

ab
c

 =

0
0
0



|ω = −1〉 =
1√
2

 1
0
−1


For |ω = 0〉, 0 0 1

0 0 0
1 0 0

ab
c

 =

0
0
0



|ω = 0〉 =

0
1
0
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For |ω = 1〉, −1 0 1
0 −1 0
1 0 −1

ab
c

 =

0
0
0



|ω = 1〉 =
1√
2

1
0
1


Verify that U†ΩU is diagonal, U being the matrix of eigenvectors of Ω

We’ll start by writing out U ,

U =



1√
2

0
1√
2

0 1 0

− 1√
2

0
1√
2



U†ΩU =



1√
2

0 − 1√
2

0 1 0

1√
2

0
1√
2


0 0 1

0 0 0
1 0 0




1√
2

0
1√
2

0 1 0

− 1√
2

0
1√
2



=

−1 0 0
0 0 0
0 0 1
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1.8.3 Hermitian Matrix Eigenvalues

Consider the Hermitian matrix

Ω =
1

2

2 0 0
0 3 −1
0 −1 3


Show that ω1 = ω2 = 1; ω3 = 2

The characteristic equation,

det Ω− ωI = det



1− ω 0 0

0
3

2
− ω −1

2

0 −1

2

3

2
− ω



= (1− ω)

((
3

2
− ω

)2

− 1

4

)
= (1− ω)(2− ω)(1− ω)

We see that our eigenvalues are ω = 1, 2.

Show that |ω = 2〉 is any vector of the form

1

(2a2)1/2

 0
a
−a



We can find the eigenvectors, 

−1 0 0

0 −1

2
−1

2

0 −1

2
−1

2


ab
c

 =

0
0
0



The eigenvector is

|ω = 2〉 =
1√
2

 0
1
−1


which follows the form given.
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Show that the ω = 1 eigenspace contains all vectors of the form

1

(b2 + 2c2)1/2

bc
c


either by feeding ω = 1 into the equation or by requiring that the ω = 1 eigenspace be
orthogonal to |ω = 2〉.

We solve 

0 0 0

0
1

2
−1

2

0 −1

2

1

2


ab
c

 =

0
0
0



The simplest solution is

1√
3

1
1
1


which is of the form given.
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1.8.4 Eigenvectors

An arbitrary n× n matrix need not have n eigenvectors. Consider as an example

Ω =

[
4 1
−1 2

]

Show that ω1 = ω2 = 3

The characteristic equation,

det Ω− ωI = det

[
4− ω 1
−1 2− ω

]

= (4− ω)(2− ω) + 1 = ω2 − 6ω + 9

The solution is ω = 3.

By feeding in this value show we get only one eigenvector of the form

1

(2a2)1/2

[
+a
−a

]
We cannot find another one that is LI

We solve [
1 1
−1 −1

] [
a
b

]
=

[
0
0

]

|ω = 3〉 =
1√
2

[
1
−1

]
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1.8.5 Eigenvectors

Consider the matrix

Ω =

[
cos(θ) sin(θ)
− sin(θ) cos(θ)

]

Show that it is unitary.

We can show this by brute force,

ΩΩ† =

[
cos(θ) sin(θ)
− sin(θ) cos(θ)

] [
cos(θ) − sin(θ)
sin(θ) cos(θ)

]

=

[
1 0
0 1

]
= I

Show that its eigenvalues are exp(iθ) and exp(−iθ)

Solving the characteristic equation,

det(Ω− ωI) = det

[
cos(θ)− ω sin(θ)
− sin(θ) cos(θ)− ω

]

= (cos(θ)− ω)2 + sin2(θ) = ω2 − 2ω cos(θ) + 1

ω = cos(θ)± i sin(θ) = exp(±iθ)

Find the corresponding eigenvectors; show that they are orthogonal

For ω = exp(iθ), [
−i sin(θ) sin(θ)
− sin(θ) −i sin(θ)

] [
a
b

]
=

[
0
0

]
We can actually simplify by factoring out a sin(θ), so we just need to solve,[

−i 1
−1 −i

] [
a
b

]
=

[
0
0

]
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|exp(iθ)〉 =
1√
2

[
i
−1

]
For ω = exp(−iθ), we can perform the same simplification,[

i 1
−1 i

] [
a
b

]
=

[
0
0

]

|exp(−iθ)〉 =
1√
2

[
i
1

]
To show that these are orthogonal,

〈exp(iθ)| exp(−iθ)〉 =
1

2

[
−i −1

] [i
1

]

=
1

2
(1− 1) = 0

Verify that U†ΩU =(diagonal matrix), where U is the matrix of eigenvectors of Ω

We start with

U =


i√
2

i√
2

− 1√
2

1√
2


Now multiplying through,

U†ΩU =
1

2

[
−i −1
−i 1

] [
cos(θ) sin(θ)
− sin(θ) cos(θ)

] [
i i
−1 1

]

=

[
exp(iθ) 0

0 exp(−iθ)

]
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1.8.6 Determinant and Trace

We have seen that the determinant of a matrix is unchanged under a unitary change
of basis. Argue now that

det(Ω) = product of eigenvalues of Ω =

n∏
i=1

ωi

for a Hermitian or unitary Ω.

Remember Shankar 1.7.2, where we showed,

det(Ω) = det(U†ΩU)

Looking at Shankar 1.8.5, we know that U†ΩU = (diagonal matrix) whose elements are the
eigenvalues. Thus,

det(Ω) =

n∏
i=1

ωi

Using the invariance of the trace under the same transformation, show that

Tr(Ω) =

n∑
i=1

ωi

By the same logic, a unitary change of basis results in a diagonal matrix whose elements are the
eigenvalues.

Tr(Ω) = Tr(U†ΩU) =

n∑
i=1

ωi
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1.8.7 Trace and Determinant

By using the results on the trace and determinant from the last problem, show that
the eigenvalues of the matrix

Ω =

[
1 2
2 1

]
are 3 and -1. Verify this by explicit computation. Note that the Hermitian nature of
the matrix is an essential ingredient.

We calculate that the determinant is -3 and the trace is 2. The only combination of eigenvalues
that give these results are ω = 3,−1. To compute explicitly, we solve the characteristic equation,

det(Ω− ωI) = det

[
1− ω 2

2 1− ω

]

= ω2 − 2ω − 3

which gives ω = 3,−1.
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1.8.8 Eigenvalues

Consider Hermitian matrices M1,M2,M3,M4 that obey

M iM j +M jM i = 2δijI, i, j = 1, ..., 4

Show that the eigenvalues of M i are ±1. (Hint: go to the eigenbasis of M i, and use
the equation for i = j.

Using the suggestion,

M iM i = I

Taking the determinant and trace,{
det(M iM i) = det(I) = 1

Tr(M iM i) = n

where n is the dimension of the matrix. The determinant implies that det(M i) = 1 since we
can split the determinant. Furthermore, we know that the eigenvalues of Hermitian operators are
real, so the only possible eigenvalues are ω = ±1.

By considering the relation

M iM j = −M jM i for i 6= j

show that M i are traceless. [Hint: Tr(ACB) = Tr(CBA).

We multiply both sides by M i,

M iM jM i = −M jM iM i

From the previous part, we showed that M iM i = I,

M iM jM i = −M j

Taking the trace and using the given hint,

Tr(M iM jM i = −Tr(M j)

Tr(M iM iM j) = −Tr(M j)

Tr(M j) = −Tr(M j)

which implies that M j is traceless.
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Show that they cannot be odd-dimensional matrices.

We showed that {
det(M i) =

∏n
i=1 ωi = ±1

Tr(Ω) =
∑n
i=1 ωi = 0

The only way for this to be true is if we have an equal number of ω = 1 and ω = −1, which
implies that our matrices are even-dimensional.
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1.8.9 Angular Momentum

A collection of masses mα, located at ~rα and rotating with angular velocity ~ω around
a common axis has an angular momentum

~l =
∑
α

mα(~rα × ~vα)

where ~vα = ~ω × ~rα is the velocity of mα. By using the identity

~A× ( ~B × ~C) = ~B( ~A · ~C)− ~C( ~A · ~B)

show that each Cartesian component li of ~l is given by

li =
∑
j

Mijωj

where

Mij =
∑
α

mα[r2αδij − (~rα)i(~rα)j ]

or in Dirac notation

|l〉 = M |ω〉

Will the angular momentum and angular velocity always be parallel

Only if |ω〉 is an eigenvector of M

Show that the moment of inertia matrix Mij is Hermitian

We want to show

Mij = Mji

Let’s look at each component individually. We know that δij = δji, so that part is pretty easy.
In addition,

(~rα)i(~rα)j = (~rα)j(~rα)i

since we are just multiplying two scalar values.
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Consider the moment of inertia matrix of a sphere. Due to the complete symmetry
of the sphere, it is clear that every direction is its eigendirection for rotation. What
does this say about the three eigenvalues of the matrix M

Every direction is an eigendirection, which means that all eigenvalues are equivalent, so the
eigenvalues are degenerate.
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1.8.10 Simultaneous Diagonalization

By considering the commutator, show that the following Hermitian matrices may be
simultaneously diagonalized. Find the eigenvectors common to both and verify that
under a unitary transformation to this basis, both matrices are diagonalized.

Ω =

1 0 1
0 0 0
1 0 1

 , Λ =

2 1 1
1 0 −1
1 −1 2


Since Ω is degenerate and Λ is not, you must be prudent in deciding which matrix
dictates the choice of basis.

If [Ω,Λ] = 0, there exists a common basis.

ΩΛ =

1 0 1
0 0 0
1 0 1

2 1 1
1 0 −1
1 −1 2

 =

3 0 3
0 0 0
3 0 3



ΛΩ =

2 1 1
1 0 −1
1 −1 2

1 0 1
0 0 0
1 0 1

 =

3 0 3
0 0 0
3 0 3


which shows that Ω and Λ commute. Let’s work with Λ,

det(Λ− ωI) = det

2− ω 1 1
1 −ω −1
1 −1 2− ω


= (ω − 2)(ω − 3)(ω + 1)

Our eigenvalues are ω = 2, 3,−1.
For ω = 2, 0 1 1

1 −2 −1
1 −1 0

ab
c

 =

0
0
0



|2〉 =
1√
3

 1
1
−1


Similarly,

|3〉 =
1√
2

1
0
1
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|−1〉 =
1√
6

−1
2
1


Our unitary matrix is

U =



1√
3

1√
2
− 1√

6

1√
3

0
2√
6

− 1√
3

1√
2

1√
6



U†ΩU =



1√
3

1√
3
− 1√

3

1√
2

0
1√
2

− 1√
6

2√
6

1√
6


1 0 1

0 0 0
1 0 1




1√
3

− 1√
2
− 1√

6

1√
3

0
2√
6

− 1√
3

1√
2

1√
6



=

0 0 0
0 2 0
0 0 0



U†ΩU =



1√
3

1√
3
− 1√

3

1√
2

0
1√
2

− 1√
6

2√
6

1√
6


2 1 1

1 0 −1
1 −1 2




1√
3

− 1√
2
− 1√

6

1√
3

0
2√
6

− 1√
3

1√
2

1√
6



=

2 0 0
0 3 0
0 0 −1
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