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Chapter 1

Fundamental Concepts

1.1 Commutation Relations
Prove

[AB,CD] = —AC{D, B} + A{C, B}D — C{D, A}B + {C, A} DB

It’s a little easier if we start with the right side of this equation. Looking at the individual
components,

AC{D,B} = ACDB+ ACBD (1)
A{C,B}D = ACBD + ABCD (2)
C{D,A}B=CDAB+ CADB (3)
{C,A}DB =CADB + ACDB (4)
Inserting , , , into our initial equation and killing terms, we get
ABCD —CDAB

which is what we expect if we expand the left side of the equation.
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1.2 Pauli Matrices
Suppose a 2 x 2 matrix X (not necessarily Hermitian, nor unitary) is written as
X=ay+7-a

where qp and a2 3 are numbers.

1.2.a How are ag and a; (k =1,2,3) related to Tr(X) and Tr(c,X)?
We start by taking the trace of X,

Tr(X) = Tr(aogl) + Tr(& - @) (1)

By definition, the Pauli matrices(oy) are traceless, so re-scaling them by a constant factor does
nothing to the trace,
Tr(X) =Tr(agl) = 2a9 (2)

If we multiply X by one of the Pauli matrices, we write out explicitly,
01X = a0y, + a10L01 + A20,09 + a30,03 (3)
We should also remember the following relation,
0a0b = Sapl + i€abc0e (4)

where €4 18 the Levi-Civita tensor. When we take the trace of , the first term dies since
that is just a re-scaled Pauli matrix. Looking at , we can convince ourselves that only a = b
terms survive since we just get another Pauli matrix otherwise. Thus, only the k term survives

Tr(O'kX) = 2ak (5)

Rewriting for convenience,
ag = 1/2Tr(X) (6)
ar, = 12 Tr(oX) (7)

1.2.b Obtain ay and a; in terms of the matrix elements X,;.

As a reminder, the Pauli matrices are:

(D) (1) ()

From this, we can write X,

X = |:CLO + 93 al — ia2:| (9)
ay +1ay ag — as
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Multiplying each Pauli matrix by X, i.e., 01X,

(Xo1 X
o X = | X2 X2
X1 X2
[ iXor —iX
0o X = .Z 21 .Z 22 (10)
1X11 1X12
B X
53X = 11 12
|~ X122 — X2

Using @ and ,
ag = 1/2 Tr X) = 1/2(X11 + XQQ)

(

ay; = 1/2 T‘I‘(O’lX) = 1/2(X21 + X12)

ag = 1/2 TI‘(O'QX) = 1/2(—iX21 + ing)
(03X) = 1/2(X11 — Xo)

(11)

as = 1/2Tr(o3X
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1.3 Invariant Determinant

Show that the determinant of a 2 x 2 matrix & - d is invariant under

Yoo o i0-ng\ L —i0 - N
0-d—0-d =exp o-aexp| ———

2 2

Find a) in terms of a; when 7 is in the positive z-direction and interpret your result.

Let’s go ahead and take the determinant of both sides. We know that the determinant of a
matrix product is equal to the product of the determinant of the individual matrices, so we can
break up the right side of this equation,

det(5 - @) = det (eXp (w 2”¢)> det( - @) det (exp (_Zim‘s)) (1)

Each determinant is just a scalar, so we can rearrange them for free,

= det <eXp (i&' 2ﬁ¢)> det (eXp <_25’2ﬁ¢>) det(d - @)

And then recombine,
= det (exp <w2nq§) exp (w 2n(/)>) det(d - @)

det(d - @) = det(d - @) (2)

Setting 7 in the z-direction,
f=2%=(0,0,1) (3)

Substituting this in, we pick out the o, Pauli matrix,

o-d =exp (i022¢> o - dexp <—igz¢> (4)

In matrix form,

— (expgﬁf’/?) exp(0i¢/2)) (al 131'@2 a1—a2a2> (exp(gw/?) exp(()i¢/2))

L, (( as (ay —iag)exp(i(b)) (5)

7T (0 + iaz) exp(—ig) —as

We notice that & - @ can be written as X from problem 1.2,

3
5-6’2a0+20kak (6)
k=1
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We already solved for how to find ax in terms of the matrix elements of X, see @ and of
problem 1.2.

asz —as

ap = 5 = 0
ay =1/2[(ay + iaz) exp(—id) + (a1 — iaz) exp(id)] = a;j cos(¢) + as sin() (7)
ay = 1/2[—i(a1 +iag exp(—i¢) +i(a1 — iaz) exp(ip)] = —ay sin(¢) + az cos(¢)

az =1/2(a3 +a3) = a3

This transformation represents a rotation about the z-axis.



10 CHAPTER 1. FUNDAMENTAL CONCEPTS

1.4 Bra-Ket Algebra

Using the rules of bra-ket algebra, prove or evaluate the following:

l.4.a Tr(XY)=Tr(YX), where X and Y are operators;
From (1.5.14), the trace of XY is:

Tr(XY) =) (d|XY|d) (1)

a’

,ZZ (X0 (b'|Y]a") (2)

Since both terms are scalars, we can rearrange them freely,

We can insert identity,

=D > WYld) (@1 X]Y) (3)
a v
= Iy xp) (4)
b/
Since the trace is independent of representation (1.5.15), we can convert b’ back to @/,
=2 (Y Xla) (5)
Tr(XY) =Tr(YX) (6)

1.4.b (XY)'=YTXT where X and Y are operators;

Let’s act XY on some unsuspecting ket, |a),

(XY) ) (7)
The dual-correspondence (1.2.10),
(al (XY)T (8)
Alternatively, we can write,
XY a) = X (Y |a)) (9)
The dual-correspondence,
(o YTXT (10)

Comparing and , it follow,

(X)) =yTxt (11)
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1.4.c explif(A)] =7 in ket-bra form, where A is a Hermitian operator
whose eigenvalues are known;

Let’s act the function on a vector,

exp(if (A)) la) = [cos(f(A)) + isin(f(A))] |a) (12)
From (1.7.9), if we know the eigenvalues of A, we can replace the operator with the eigenvalues,
= [cos(f(@)) + isin(f(a))] |a) (13)

Matching solutions,
exp(if(A)) = exp(if(@)) (14)

1.4.d >, ¢5 (@) Ye ("), where ¢y (7') = (Z'|d’)
Writing out explicitly,

S (@) (7)) = 3 (|7) (@|a) (15)

a’

We recognize this as the trace (1.5.14), and we see from (1.5.16¢) that this is the delta function,

= Tr(|7) (&"]) = bz 2 (16)
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1.5 Matrix Representation

1.5.a Consider two kets |«) and |3). Suppose (d'|a), (a"|a), ... and (d'|3),

(a"|B),... are all known, where |d’), |a"),... form a complete set of
base kets. Find the matrix representation of the operator |o) (§| in
that basis.

The answer is given in the text (1.3.31),

<al'/|0z> <a'/|5>i (a/’l|oz> <a/,/,|ﬁ>i
ja) (5] = | (@ |0‘>.<a 18)" {a”|e) {a”[B)" ... Q)

1.5.b  We now consider a spin /2 system and let |a) and |5) be |s, = h/2)
and |s, = h/2), respectively. Write down explicitly the square ma-
trix that corresponds to |a) (| in the usual (s, diagonal) basis.

We expect a 2 x 2 matrix. We can get |s, = fi/2) from (1.1.9a).
|82 = 1/2) (sz = 1/2] = ) - 1/2(([ + () (2)

In the s, basis, we define,

From this,

V2
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1.6 Adding Eigenkets

Suppose [i) and |j) are eigenkets of some Hermitian operator A. Under what condition
can we conclude that |i) + |j) is also an eigenket of A? Justify your answer.

Acting A on our eigenkets,

Ali) = ali)
{A )=l W
In order for |i) + |j) to be an eigenket of A,
A(l7) +17)) = a” (|7) + 17)) (2)

Alternatively, we could distribute the operator,
A(li) +17)) = Ali) + Alj) (3)

A(l7) +17)) = ali) + a'[ 1) (4)

Comparing and , they are only equal if either |¢) = |j) (trivial) or @ = o/, i.e., the
eigenvalues are degenerate.
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1.7 Operators in Ket Space

Consider a ket space spanned by the eigenkets {|a)} of a Hermitian operator A. There
is no degeneracy.

1.7.a Prove that
H(A —a)

is the null operator.
Let’s act A on an eigenvector,

A1) = d' [0) 1)

where a’ is the corresponding eigenvalue of | ).
Al¥) —a |¥) = 0) (2)
(A—d'I)[¥) =10) (3)

A —a’ =0 for at least one eigenvector. Since we product over all eigenvalues, if A —a’ = 0 for
one case, then the total must be 0.

1.7.b What is the significance of

a//¢a/
Acting the given on |a’), we can use (1.7.9) to replace the operator with the eigenvalue,

(A _ a//) o (a/ _ a//) o
H (a/ 7(1//) | > H (CL’ _ a//) | > (4)

a’ 75(1/ a’’ ;éll/

1A= ) =) 6

a//ial (a/ - a///>

Acting the operation on another vector,

allia/
We can insert identity and then use ,
(A—a")
[1 o= a) @) = 1) @) 7)
a//#a/

We recognize the first part as the projection operator (1.3.15), so we conclude that this operation
is the projection operator of a’.
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1.7.c Illustrate (a) and (b) using A set equal to S, of a spin /2 system.

As a reminder,

hfz 0
5= [ 0 h/Q] (8)
with eigenvalues w = +7/2. Showing (a), we substitute in A =S, and a’ as the eigenvalues,
H(A —a') = (S, —"R)(S, +/2) (9)
|0 0] |h O] 0
|0 —=R| [0 O
For (b), we have a’ = /2 and o” = —h/2,
(A_al/)_sz+h/2_ 1 0
H (a/ _ a//) - i 10 0 (10)

al/#al
Acting this on a general vector,
1 0] |a a
o o] B] =13 w

we pick out the spin-up component.
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1.8 Orthonormality

Using the orthonormality of |+) and |-), prove

) h?
[S:,S;] = i€ juhSk, {95} = () 0ijs

2
where
S = 2019 F+ 1) o)
Sy = Ty e+ D
So= 2 (1= e

As an example, let’s set ¢ = = and j = y and brute force. Remember the orthonormality
rules(1.2.14),

(o) = (1) =1
{<+|—> = (=0 W
The commutation relation,
[y Sy| = 528y = Sy S = %(H (L 1) GD= 19 T 1 o)
—%(— [9) CL 1) GD U L 1) ()
ih?
= (G CIH 1) CRY G = 1) ) G ) G ]
+ 19 I 1) CR) GE= 1) G CE = 1) (1) )
: 2
= P09 ¢~ 1 () = . 3)
We do the same thing with the anti-commutation relation,
{8z, Sy} = 928y + Sy Sa = ?(H (11 GD= 1) 1) ”
+%(— ) L1 DA T+ 1) D)

= BV 19 D = P ol L+ P G

= [ ) =10 ) GL 1) ) L 1) 1) )

Everything cancels, and we are left with 0. We can repeat this for all other combinations to
prove the desired relations.
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1.9 Rotation Operators

Construct |S - ; +) such that

§'ﬁ|§~ﬁ;+>=(2)l§~ﬁ;+>

where 7 is characterized by the angles shown in (Figure 1.1J).

Pt Express your answer as a linear combination of |+) and |-).
> : [Note: The answer is
Fi 1.1: Angles
e Heles cos (g) [+) + sin (g) exp(i) |-)

But do not just verify that this answer satisfies the above
eigenvalue equation. Rather, treat the problem as a straightforward eigenvalue prob-
lem. Also do not use rotation operators, which we will introduce later in this book.]

The first thing we want to do is write S - A in matrix form,

S = hfo(0y,0y,02)
{ﬁ = (cos(a) sin(B), sin(a) sin(B), cos(3)) M

S-f= g Kcos(a)o sin(3) Cos(a)osm(m) + (z sin(a())sin(ﬂ) 7ism(06) Sin(ﬂ)) + (COS(B) ¥
B[ cos(8)  sin(d) exp(z‘aq o)

§.h="_

2 [Sin(ﬁ) exp(ia) cos()

We can now solve the eigenvalue problem,

5l nie) = (5)18 i) 3)
oo e ) 1] = [

which gives us two equations,

x cos(B) + ysin(B) exp(—ia) = x
zsin(B) exp(ia) — y cos(8) = y

In addition, we have the normalization condition,

|2 + [y =1 (5)
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Looking at the first equation in , we can solve for y,
(I —cos(B))x

sin(B) exp(—ia)

s _ (= cos()Plaf
)

Inserting into the normalization condition ,

oft . 12l = 20 cos(6) +[a cos*(3)

=1
sin2(ﬂ)

2|x|? — 2|x|? cos(B)
sin2(5)

1+ cos(p)
2

=1

2 =

From half-angle formulas,
x = cos(B/2)

Plugging into the second line of (4),
cos(8/2) sin(f3) exp(icr) — y cos(B) =y
y = sin(8/2) exp(ic)

Combining and ,

5 = [ 0]

[sinw/z) exp(ia)

When writing using |+) and [|-), this gives the solution provided by Sakurai.
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1.10 Energy Eigenvalues
The Hamiltonian operator for a two-state system is given by
A = a(|1) (1] = [2) (2] + [1) (2] + [2) (1])

where ¢ is a number with the dimension of energy. Find the energy eigenvalues and
the corresponding energy eigenkets (as linear combinations of |1) and |2)).

To find the energy eigenvalues, we must solve,
H|¥) = E|V) (1)

It is probably easiest to do this in matrix representation. Setting

1 0
m=[os -] @
In this basis,
a a
o= {a —a] (3)
Solving the characteristic equation, our eigenvalues are A = +a+/2. The associated eigenvectors,
1 1+ ﬂ}
av3) = —— 4
o3 = [, (@
~ave) = Y] )
4—-2v2 [ 1
In the |1), |2) basis,
1
av2) = ———=[(1+V2)|1) + |2
av) = 50+ VA I + 2)]
(6)

B 1

~av2) = - —— e

[(1=v2)[1) +12)]



20 CHAPTER 1. FUNDAMENTAL CONCEPTS

1.11 Energy Eigenvalues
A two-state system is characterized by the Hamiltonian
H = Huy [1) (1] + H2 [2) 2 + Hi2[[1) (2] + [2) (1]

where Hy1, Hyo, and Hiy are real numbers with the dimension of energy, and |1) and
|2) are eigenkets of some observable(# H). Find the energy eigenkets and corresponding
eigenvalues. Make sure that your answer makes good sense for Hi2 = 0. (You need not
solve this problem from scratch. The following fact may be used without proof:

(S 7) [A; ) = hf2|R; +) 5
with |7;+) given by
|75 +) = cos(Bf2) |[+) + exp(icr) sin(5/2) |-) ,

where $ and o are the polar and azimuthal angles, respectively, that characterize

>

The easiest way to solve this is using matrices. In this case, the Hamiltonian is given by

Hiu Hiz
H= 1
{Hm H22} @

Solving the characteristic equation gives two eigenvalues,

(Hyy + Hao) + /(Hi1 + Ha2)? — 4(Hy1 Hag — H7)
2

A=

(Hyy + Hao) — \/(Hyi1 + Ha2)? — 4(Hy1 Hap — HP)

Ay = >

To find the eigenkets, we need to satisfy

(Hll — )\)(l + H12b =0
Hisa + (H22 — /\)b =0

Let’s start by setting a = 1 in the first equation,

!
M) =] Hui—A (4)
| Hi
Setting b = 1 in the second equation,
Ao) = | — 5
h) = |- 5)
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1.12 Measurement of Spin

A spin 1/2 system is known to be in an eigenstate of S -7 with eigenvalue /2, where 7
is a unit vector lying the zz-plane that makes an angle v with the positive z-axis.

As a reminder, (1.1.9a) tells us what |S,) looks like in the S, basis,
|Se;+) = Va(l+) + 1) (1)
Furthermore, from question (1.9), we know a generic ket in this basis can be written as
|§- 5 +) = cos(7/2) [+) + sin(7/2) | (2)

Note that because we are in the xz-plane, we set a = 0.
1.12.a Suppose S, is measured. What is the probability of getting +7/2?

Using (1.4.4), starting in |§ n; +), the probability of going to the state |S,;+) is given by
P(f2) = | (Su; #|S - 25 4) (3)

= 21T+ (Dcos(r2) 1) + sin(r/2) P2

1 .
= 5| cos(7/2) + sin(7/2)[?

P(tf2) = 51+ sin()) ()

Let’s check for some easy cases. If 71 is aligned orthogonal to the z-axis (v = 0 or v = 7) we are
starting in the |+) or |-) state, and we expect half of the particles in the +7/2 state. If 7 is aligned
orthogonal to the x-axis (y = 7/2) we are starting in the |S,;+) state, and all the particles should
remain in that state.

1.12.b Evaluate the dispersion in S,, that is,

((Se = (S2))?)
From (1.4.11),

So = (1) (D) + () (D] (5)
Sp = %[(H (0 + () (D] (6)

Using , we can use (1.4.5) to find the expected values,

(Sz) = g[COS(”/Z) (# +sin(v/2) CII[(F) D)+ () GDIeos(v/2) [+) + sin(v/2) )] (7)
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(S2) = 2 sin(r) (®)
(52) = leos(1f2) (-1 4 sin(o2) (1) (1) + (F) EDleos(of) |+ sinG) ] (9)
h2
(=2 (10)
Combining and 7 ,
(82) = (84)? = & cos?(s) (1)

4
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1.13 Stern-Gerlach

A beam of spin !/2-atoms goes through a series of Stern-Gerlach-type measurements
as follows:

a. The first measurement accepts s, = /2 atoms and rejects s, = —/2 atoms.

b. The second measurement accepts s, = /2 atoms and rejects s, = —h/2 atoms,
where s, is the eigenvalue of the operator §-ﬁ, with 7 making an angle 8 in the xzz-plane
with respect to the z-axis.

c. The third measurement accepts s, = —//2 atoms and rejects s, = /i/2 atoms.

What is the intensity of the final s, = —/i/2 beam when the s, = /2 beam surviv-
ing the first measurement is normalized to unity? How must we orient the second
measuring apparatus if we are to maximize the intensity of the final s, = —//2 beam?

In matrix form, we can write the first measurement as A = |+) (+| since only the |+) state
survives. The second measurement can be written as B = |n;+) (n; +| where |f;+) = cos(8/2) |+) +
sin(#/2) |+).The third measurement can be written as C' = |-) (-|. Thus, the total will be CBA,

CBA — (O 0) ( 0052(5./2) cos(f?/22) sin(ﬁ/z)) (1 O) _ ( 0 . 0) (1)
0 1) \cos(?)sim(a)  sin(5f2) ) \0 0) T \cos(3/2)sin(3f2) 0
In bra-ket notation, this can be rewritten
T = CBA = cos(8/2) sin(b/2) |) (+] (2)
Acting this on a generic beam,
T([+) + ) = cos(P/2) sin(5/2) |) 3)
Intensity is related to the beam squared,

sin”(8)
4

I = cos*(Bf2)sin®(8)2) =

(4)

which is maximized when 8 = 7/2, which gives an intensity a quarter the initial surviving beam.
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1.14 Eigenvalues

A certain observable in quantum mechanics has a 3 x 3 matrix representation as follows:
01
1
— |1 0
V210 1

o = O

1.14.a Find the normalized eigenvectors of this observable and the cor-
responding eigenvalues. Is there any degeneracy?

Solving the characteristic equation gives the eigenvalues A = 0,+1. There is no degeneracy since
we have three eigenvalues for a 3 X 3 matrix. Solving for the eigenvectors,

1| ! L !
=750 M=3 \{53 -1 =3 —1/5 (1)

1.14.b Give a physical example where all this is relevant.

Looking this up, these are the eigenvalues and eigenvectors for the spin-1 particle. This is further
explained in chapter 3 of Sakurai.
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1.15 Simultaneous Eigenkets

Let A and B be observables. Suppose the simultaneous eigenkets of A and B {|a/,V')}
form a complete orthonormal set of base kets. Can we always conclude that

[A, B] = 07

If your answer is yes, prove the assertion. If your answer is no, give a counterexample.

We start by writing [A, B] out and inserting identity on both sides,

[A, B =YY" |a" V") (a", V| (AB — BA)|d’, V) (d/,V| (1)

a’ b’ all b
If we act the operators on our ket, we use the relation,
AB|d',b') = d'b |d',b) (2)
Inserting this into ,

[A,B] — Z Z |a”,b”> <a”,b”| (a’b’ _ b/a/) |a’,b’> <a’,b'\ (3)

a”,b” (J/,b/

We know that a’b’ — b’a’ = 0 since these are not operators, so the order does not matter.
[A, B] = 0 if the simultaneous eigenkets of A and B form a complete orthonormal set of base kets.



26 CHAPTER 1. FUNDAMENTAL CONCEPTS

1.16 Simultaneous Eigenkets
Two Hermitian operators anticommute:
{A,B} =AB+BA=0

Is it possible to have a simultaneous (that is, common) eigenket of A and B? Prove or
illustrate your assertion.

Let’s act eigenkets of A on the anti-commutator,
(a"|ABJd’) + (a"|BA|a")
Using eigenvalue relations,
= o " Bla) +d (a"|Bla’) = (@ + ') (a"| Bla

We expect this to be equal to 0 if A and B anti-commute. Since (a” + a’) # 0, this implies
(a"|Bla’y = 0 for both @’ = o’ and a” # o', which implies they do not have simultaneous eigenkets.



1.17. DEGENERATE OBSERVABLES 27

1.17 Degenerate Observables

Two observables A; and A;, which do not involve time explicitly, are known not to
commute,

[Ah AQ} 7é 07
yet we also know that A; and A; both commute with the Hamiltonian:
[A1, ] =0, [A2,5]=0

Prove that the energy eigenstates are, in general, degenerate. Are there exceptions?
As an example, you may think of the central-force problem 7 = 52/2m + V(r), with
Al — Lza A2 — Ll

We start with the eigenvalue equation for the Hamiltonian,
H |n) = E|n) (1)
Acting the commutation relations on the eigenket,
[A1, A [n) =0, [Ag, H]|n) =0 (2)

Let’s look at just the left. Expanding out,

Ay Iny — A |ny =0 (3)
E(A1|n)) = #(A1|n)) (4)
Since A; and 27 commute, they must share a complete set of eigenstates.
Aj |n) = ay |n) (5)
Similarly,
Az |n) = az |n) (6)

Acting the non-commuting relation on |n),
[A1, Ao] [n) = (A1Az — A Ay) |n)

= (a1a2 — azay) |n) (7)

Since a; and as are both scalars, they can be rearranged freely, meaning this all goes to O.
However, we know this to not be true since A; and Ay do not commute. Therefore, the energy
eigenstates must be degenerate.
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1.18 Uncertainty Relations

1.18.a The simplest way to derive the Schwarz inequality goes as follows.
First, observe

({al + A" (B) - () +A15)) = 0

for any complex number )\; then choose )\ in such a way that the preceding inequality
reduces to the Schwarz inequality.
Nothing doing, let’s start by expanding out the given equation,

(ala) + A{alB) + A" (Bla) + XA (B]B) = 0 (1)

We want this to match the Schwarz inequality(1.4.54),

(ala) (B18) > |(alB)? @
For this,
_ (Bla)
A= 61 ®)

Inserting this into ,

(Bl (a]B) _ (alB) (Bla) | (alB) (Blev) (B15)

o) =~ Em T @E 2 @
(ala) (818) — (alB) — {alB)I2 + [{al )% > 0 5)
(ala) (818) > (B[ (6)

1.18.b Show that the equality sign in the generalized uncertainty relation
holds if the state in question satisfies

AA|a) = AMAB |a)

with A purely imaginary.
The generalized uncertainty relation is given by (1.4.59),

((AA)%) ((AB)?) > [ (AAAB) |? (7)
The right-side of this equation, we can use (1.4.63),

[(AAAB) [P = /s ([A, B]) |* + 1/a| ({AA, AB}) [? (8)
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We can use the definition of an operator (1.4.50), to show

[A,B] = [AA, AB); o)
{A,B} ={AA,AB}
Let’s now look at each term in
([A, B]) = («|(AAAB — ABAA)|«) (10)
=X (a|(AB)*|a) — A (al(AB)?|a) (11)
Since A is purely imaginary, \* = —A,
([A,B]) = —2A((AB)?) (12)
Similarly, we can show,
({AA,AB}) = (a|(AAAB + ABAA)|a) =0 (13)
[Eution § becomes,
[(AAAB) P = N (AB)) (14)
Using the relation given in the problem, we can rewrite,
= ((A4)*) ((AB)?) (15)

1.18.c Explicit calculations using the usual rules of wave mechanics show
that the wave function for a Gaussian wave packet given by

Ny - ip)a’ (2 —(x))?
(2'|a) = (2md?®) V4 exp e T i

satisfies the minimum uncertainty relation

h
V{Az))/({(Ap)?) = 3
Prove that the requirement
(' |Az|a) = (imaginary number) (z'|Ap|a)

is indeed satisfied for such a Gaussian wave packet, in agreement with (b).
Let’s start by finding (z'|Az|a) and (z'|Ap|a) in integral form,

@laia) = [ (la") @"lala) do” ~ [ (o) "] (@) o) da” (16)

= /6(:0' — 22" (2" |a) dz" — /5(33' — 2" (z) (2" |a) dz” (17)
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Inserting the Gaussian wave packet,

ot taniy e (8T
- / 5(z — o) () (2md®) " exp (“pféx" G ;dﬁx»Q) da"  (18)

Turning now to p,
@lapla) = [ ") o = o) da” — [ (@) ("] ) o) da” (19)

_ / 5z’ — 2") (‘”ﬂn«) (2"]a) da” — / 5z — ) (p) { (20)
Inserting the Gaussian wave packet,
:/5(x’—x ) 8 (2md?)~ U exp ( - dx"
81: 4d2
2\—1/4 i{p)a” _ (2" — (x))* I
/(5 x—a’ (2mwd?) exp( & 12 dx"  (21)

— [ aa = i [(mz)—w exp ( W ;dgx»?) ( ) 2" - <x>>> o

- [t o) o maty ey (NI ) e (o

:/5@/—:5”) (%) (27rd2)_1/4exp< 4d2 ) da”
- [ote - (f;ﬁ)@wd% 1/4exp( st R der o
Comparing the two, e "
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1.19 Expectation Value of Spin States

1.19.a Compute

((ASy)?) = (S2) — (S,)?

where the expectation value is taken for the |S.;+) state. Using your result, check
the generalized uncertainty relation

(AA4)*) (AB)?) = 2| ([A, B I”

1 =

with A — S;, B— 5,.
Let’s check the dispersion relation by looking at each component separately using (1.4.18a),

(S2) = (S:;+[S31S2:+) (1)
h? h?
= G D+ () EDT =
h
(Sz) = 5 CII=) ¢+ () DI+ =0 (2)
What we find agrees with (1.4.52),
(A8)%) = (52) ~ (52 = ¢
Similarly, we can convince ourselves,
h2
((A8))%) = 3)
Let’s now turn to the uncertainty relation,
((AS:)%) ((ASy)%) > il ([Sz, Syl) I? (4)
On the right side,
ih? ih?
{[Sz, Syl) = = 109) GD = (1) CDIIF) = =+ (5)

Both sides of give h'/16.
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1.19.b

Check the uncertainty relation with A — S,, B — S, for the |S,;+) state
Reminder that from (1.4.9),

1 1
|Sw;+>:ﬁ|+>+ﬁ|_> (6)
Let’s calculate the dispersion,
(S7) = %[(*I + CIIA D)+ ) DI + 1)) (7)
h? h?
= g [+l + Rl =7
(Sz) = Z[H + GO D+ () DI + 1) (8)
h h
= Zl61+ Y + P =5
Combining this,
((AS)%) =0 (9)

which means we don’t need to calculate ((AS,)?). Let’s now turn to the uncertainty relation
and check to make sure ([S, S,]) > 0.

([Sz: Syl) = %[(*\ + (NI GO = ) EDIY + 1] (10)

ih?
= [+l =Rl =0
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1.20 Uncertainty Relation
Find the linear combination of |+) and |-) kets that maximizes the uncertainty product
((AS2)?) ((AS,)?)

Verify explicitly that for the linear combination you found, the uncertainty relation
for S, and S, is not violated.

As a reminder,

(85292 = I 1D+ (8 01 — (IBLH )+ () (Dl

((88,2) = 1 6+ () D) = (1510 )+ €1 Dl
For a generalized wavefunction, let’s use |§ S5,

[¥) = al+) + (1 —a®)' /2 exp(if) ) (2)

Substituting in, we find the expectation values,

(AS,)?) = %[1 —4a?(1 — a?) cos?(B)]

(3)
h2
((AS,)?) = <= 4a*(1 - a®) sin® ()]
54
((AS;)?) ((ASy)?) = el ~ 4a*(1 = a®) + 4a’ (1 — a®)? sin*(28)] (4)
This value is maximized when 8 = 7/4,
ﬁ4

= E[1—4a2(1—cﬂ)+4a4(1—cﬂ)2] (5)

This is maximized when a? = 0 or 1. The linear combinations are either

+1]+)

(6)

e ()1

We've already shown =+ |+) obeys the uncertainty relation in the previous problem, so let’s look
at the other one,

(528 exp (=) 1509 ()~ - ik e () )
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1.21 Uncertainty Relation, Particle in a Box

Evaluate the z — p uncertainty product ((Az)?) ((Ap)?) for a one-dimensional particle
confined between two rigid walls

v 0; forO<z<a
N oo;  otherwise

Do this for both the ground and excited states

We recognize this as a particle in a box, so we can use the solution found in (A.2.4), Appendix
2,

P = gsin (@)

a a

Ground state at n = 1, excited states for n >= 2.
We can now go ahead and calculate the uncertainty product. Using (1.4.51),

o0 a 2
(z?) = / Y*a®y dr 2/ 2% sin (@) dx (1)
— 00 0o a a
Using the double-angle formulas,

1 [ 2 21 2
:7/ x29:200s(mm> dx:a——f/ :v2cos<mm> dx (2)
a Jo a 3 aljy a
: . 9 , 2nmx
Integrating by parts with u = z* and v" = cos ,
a
= a—Q 1 ﬁ sin nmz e [*ar sin 2nme dx (3)
3 a|2nm a 0 0 NT a

a2 1 (“ax . <2n7rx>
=—4 - — sin dx
3 ajy nmw a

2nmx
Integrating by parts again, v = x and v’ = sin ( ),

a
a? 1 ax 2nmx
= —+ — |—7—cos
3 nmw 2nmw a

a a [° 2nmx
— d 4
0+2nﬂ' 0 COS( a ) x] )
1 1
— 2 _ -
- (3 2n27r2> 5)

(z) = 2 /Oa:csin2 (?) dx (6)

a
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Using the double-angle formulas,

. 2nmx
Integrating by parts, u = z, v’ = cos ( >7

a
a ar . 2nmx\ |@ / . 2nmx
= — — |——sin ——¢in dx
2 2’117'(’ 0 2n7T

((80) = a (5 - %ﬂr)

Let’s look at momentum (1.7.28),
ply) = Zﬁ[nﬂ cos (@)
a a
2 2.2
p2 |w>h2\/7n ';T sin (TL?T:L’)
a a a

hn?m22 [® nw
2\ _ < .2
(p°) = pe a/o sin ( . ) dx

Using the double angle formulas,

m2n2n? e 2nmx h2n2n?
= 3 1 — cos dr = 5
a 0 a a

(p) = _Qihmr /Oa sin (?) cos (?) dx

a2

Using double angle formulas,

35
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1.22 Uncertainty Principle, Fermi Question

Estimate the rough order of magnitude of the length of time that an ice pick can be
balanced on its point if the only limitation is that set by the Heisenberg uncertainty
principle. Assume that the point is sharp and that the point and the surface on which
it rests are hard. You may make approximations which do not alter the general order
of magnitude of the result. Assume reasonable values for the dimensions and weight
of the ice pick. Obtain an approximate numerical result and express it in seconds.

We can approximate this as a point particle with mass m on the end of a massless rod of length
[. From classical mechanics, the torque equation,

2

d?6
T = mlzﬁ = mg0l (1)

Solving, we get an time-dependant equation for the angle,

0(t) = aexp (ﬁt) +bexp (- ?t) (2)

The uncertainty in position at time ¢ = 0,

Az =10(0) = (a + b)l (3)
The uncertainty in momentum at time ¢ = 0,
do
Ap:mlaz %(afb)ml:m\/gﬁ(a—b) 4)
Using the Heisenberg uncertainty principle,
h
AxAp = 5 (5)
2 32 h
(a® —b*)m+/gl =5 (6)
We want to minimize this, so let’s start by setting b = 0,
h
a?= ——— (7)

2m+/gl3

Let’s say we notice deviation at around € = 1°. Solving for time in simplifies to,

3
Do [ ) 2mvee (8)

t =
g h
Using,
I =0.1m;
g = 10m/s?; )
m = 0.1kg;

h=10"3*m%kg/s

We end up with something around 2 seconds.
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1.23 Simultaneous Eigenkets

Consider a three-dimensional ket space. If a certain set of orthonormal kets-say, |1),
|2), and |3)-are used as the base kets, the operators A and B are represented by

a 0 0 b 0 0
A=[0 —a 0|, B=[|0 0 —ib
0 0 -a 0 ib 0

with a and b both real.

1.23.a Obviously A exhibits a degenerate spectrum. Does B also exhibit
a degenerate spectrum?

Solving the characteristic equation, we get eigenvalues A = +b. Since there are repeated eigenvalues
(A =b), there is degeneracy.

1.23.b Show that A and B commute
Nothing doing,

a 0 0\ /b 0 0 ab 0 0

AB=[0 —a 0|0 0 —ib]=(0 0 iab (1)
0 0 —a) \0 @b 0 0 —iab 0
b 0 0\ [fa 0 0 ab 0 0

BA=|0 0 —ib| |0 —a O |=[0 0 iab (2)
0 0/)\0 0 —a 0 —iab 0

1.23.c Find a new set of orthonormal kets which are simultaneous eigen-
kets of both A and B. Specify the eigenvalues of A and B for
each of the three eigenkets. Does your specification of eigenval-
ues completely characterize each eigenket?

Since A and B commute, they are compatible observables and must have simultaneous eigenkets.
We start by finding two such eigenkets based on the eigenvalues of A,

1
la) = |0 3)
0

—a) = (;
—q) = —
\/5 1

Note that we chose [Equation 4| because we looked ahead and saw the solution for |b), and we
want the eigenvectors to be orthonormal.

(4)



38 CHAPTER 1. FUNDAMENTAL CONCEPTS

We need one more eigenket, so let’s use A = b,

Checking that these are simultaneous eigenkets,
Ala) =ala) Bla)=bla)

A|—-a) = —al|—a) Bl|—a)=—b|—a)
Alb) = —alb) BIb) =0b|b)
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1.24 Rotation

1.24.a Prove that (1/v/2)(1 +io,) acting on a two-component spinor can
be regarded as the matrix representation of the rotation operator
about the x-axis by angle —7/2. (The minus sign signifies that
the rotation is clockwise.)

We look ahead to (3.2.44) to find that the rotation matrix is given by

e (2) i (2) o

A clockwise rotation about the x-axis means ¢ = —7/2 and 1 = &
R ! (1+i0z) (2)
r = T = 10
V2

1.24.b Construct the matrix representation of S, when the eigenkets of
S, are used as base vectors

Since we know what S, is in the S, basis, we just need to use (1.5.12) to change the basis,

h 1 . 1 .
= 551~ i) 51 +iow) 3)

6 6500 @

S,
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1.25 Real Operators

Some authors define an operator to be real when every member of its matrix elements
(b'|AJb") is real in some representation ({|b')} basis in this case). Is this concept repre-
sentation independent, that is, do the matrix elements remain real even if some basis
other than {|V’)} is used? Check your assertion using familiar operators such as S, and
S, (see Problem 24) or z and p,.

Given a basis, {|c)}, in the {|b’)} basis,
)= 1) (') (1)
bl
Performing the change of basis (1.5.12) on an operator A to find the matrix elements in {|c)},

(Al =D () (0 [A") (B"|”) (2)

/ b//
_ZZ |b/ b// " <b/|A|b//> (3)
I b//

(b)) (b"|”") needs to be real, but the individual components don’t need to be.
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1.26 Spin Transformation Matrix

41

Construct the transformation matrix that connects the S, diagonal basis to the S,

diagonal basis. Show that your result is consistent with the general relation

U =3 1) @)

In the S, basis, based on (1.1.9),

1 1
18240 = 519+ = 1)

1 1
1S27) = 519 = 1)

In the S, basis,
/ /
|S;c§+> = |+> |S$;'> = H

(1.5.5), the transformation matrix takes it from the S, basis to the S, basis,

{|s$;+>’ = U |S,;+)

|Sm;_>l:U|Sz;_>
1\ (Ui U2\ (Yv2
0/ Us1 Usg 1/\/5
Solving,
Uz1 = —Us2
0 N Uir Uja 1/\/5
1) Us1 Usg —1/\/5
Solving,
Ui = Uiz

Combining [Equation 5| and [Equation 7|

1 /1 1
=54
We can now check this using (1.5.4),

0 =19 (75 61+ 75 ¢1) + b (51— 75 )
z

(19 G119 L1 L= 1) D

In matrix representation,

(10)

(11)
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1.27 Change of Basis

1.27.a Suppose that f(A) is a function of a Hermitian operator A with
the property Al|d’) = d'|a’). Evaluate (V"|f(A)|V/) when the trans-
formation matrix from the «’ basis to the ¢’ basis is known.

Inserting identity,

LA =D b la") ("I f(A)la') (@ |b) (1)

a’a’

We know f(A)|a"y = f(a’)]a’). Then, since f(a’) is a scalar, we can pull that out. The middle
section then goes to zero unless a” = d’,

O FAY) = Zf ) (b |a’) (a'|V') (2)

1.27.b Using the continuum analogue of the result obtained in (a), eval-
uate

(" 1F (r)]7")

Simplify your expression as far as you can. Note that r is /22 + y2 + 22, where z, y,
and z are operators.
In the continuum analogue, the sum becomes an integral,

GIFOIF) = [ F0) @) (717 d 3)
From (1.7.32),
1 i =)
Since we are integrating over all space, let’s write this in polar coordinates instead,
2 1 e} o~ A= /A YW} 0
= ﬁ/ / 2 F(r") exp (z(p P ;T cos( )) dr'd cos(0) (5)
-1Jo
1 o qr’
= F(r')sin | =— | 4 6
2w2h2q/0 (T)sm( h) r (6)

where ¢ = |p" — p"|.
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1.28 Linear Momentum Commutation

1.28.a Let x and p, be the coordinate and linear momentum in one di-
mension. Evaluate the classical Poisson bracket

[xa F(px)}classical
From (1.6.48),

o Flpy)a = 22 OF @) 0w 0F(p:) _ OF(pa)

T Oz Op B Ops or Ops

(1)

1.28.b Let x and p, be the corresponding quantum-mechanical operators
this time. Evaluate the commutator

con(32)

We first evaluate the classical Poisson bracket,

P 1Pz
1Pz eXPp h ia e
T, exp =——F7 = - €Xp (2)
cl

h Ops h h

Using (1.6.47),

ipza . E ipza _ ip2a
[x,exp( hﬂ—zhhexp( h>_ aexp( h) (3)

1.28.c Using the result obtained in (b), prove that

exp (L)1), (le!) =’ lo')
is an eigenstate of the coordinate operator x. What is the corresponding eigenvalue?

What this is saying is for
P0G
) = exp (12 1) (@

We have the eigenvalue relation,
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From the commutation relation in (b),

1F(pe) — F(pz)r = —aF (ps) (6)

Inserting this into
x ) = —aexp (zp;:a> |2') + exp (zp;:a> x|z (7)
— @ oo (22 1) 5)

We get the eigenvalue relation,

z|y) = (2" —a) [¥) (9)
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1.29 Gottfried

1.29.a On page 247, Gottfried(1966) states that

oF

21, G(P) = ih 2 o

Opi ’

can be ”easily derived” from the fundamental commutation relations for all func-
tions of F' and G that can be expressed as power series in their arguments. Verify this
statement.

We can use (1.6.47),

Gl = 5o = 2T 1)
[0, G17)] = ih ©)

A similar argument can be made for [p;, F'(Z)].

1.29.b Evaluate |22 p*]. Compare your result with the classical Poisson
bracket [z2, p?],

Using (1.7.28),

P =— 2i2
0x?

Applying the commutator to an unsuspecting vector,

2 7] ) = —a?2 2 Y 4 ) 3)
= (20 + 42y (®)
= 2ih{z, p} |v) 5)

The classical Poisson bracket,

0x% Op> 0x® Op?

2 2

- .oy

[P dr Op dp O P (6)
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1.30 Translation Operator

The translation operator for a finite(spatial) displacement is given by

where p is the momentum operator.

1.30.a Evaluate

—

[zs, 7 (1)

Let’s first calculate the classical Poisson bracket,

[xiﬂ(f)]d—zjm(e)(p(igl)) - (;;z) "

Using (1.6.47),

i, 7)) =D L7 (D) (2)

1.30.b Using (a) (or otherwise), demonstrate how the expectation value
(¥) changes under translation.

Acting the translation operator on a waveform,

W'y = 7)) (3)

Calculating the expectation value using |¢)'),

W'y = |7 (DEF 1)) (4)

Inserting the commutation relation [Equation 2|
= WIZT DT D) + 3 @7 LT Olw) (5)
= @) + > L= (@) +1 (6)

The expectation value translates
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1.31 Translation Operator

In the main text we discuss the effect of .7 (d#’) on the position and momentum eigen-
kets and on a more general state ket |a). We can also study the behavior of expec-
tation values (¥) and (p) under infinitesimal translation. Using (1.6.25), (1.6.45), and
o) = 7 (d2) |) only, prove (Z) — (Z) + dz’, p — p under infinitesimal translation.

As a reminder, (1.6.25) is
[, 7 (dT)] = dF’
(1.6.45) is
7, 7 (dz')] = 0

We calculate the expectation value of ¥ using |a),

('[F|a") = (a| TT(dE)ZT (dF)|e) (1)
Using (1.6.45), .
= (a|7N(dZ)(T (dT')Z + dT')|a) (2)
= (a|TT(di") T (di)Z + T (di')dZ|a) (3)
= (Z) + d7’ (4)

Doing something similar for the momentum,
(' [fle’) = (ol T ()P (a7 o) (5)
— (| 71(d7) 7 (47 )7 (6)
= (apla) = (p) (7)
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1.32 Gaussian Wave Packet

1.32.a Verify (1.7.39a) and (1.7.39b) for the expectation value of p and

p? from the Gaussian wave packet (1.7.35)
The Gaussian wave packet (1.7.35),

1 :L,IQ
/! _ - Iz
(|a) = YT exp (zkx 2d2)

The expectation value of p,

)= tale') (-ing. ) @)

o) 1 ) CC/2 ] ) :L'/2 ] :,C/
= /_Oo —jag OXP (—zkx’ - 2d2> - —ih (exp (zkx’ - 2d2> (zk - d2>> dx’
o, 7
w th (Zk‘ — d2) o2
:/ —— 2 exp <> dx’

o 7i/2d

We then use the Gaussian integral,

hk
7r1/2dv wd?
(p) = Rk

As expected, matches up with (1.7.39a). We then turn to the expectation value of p?,

2

?) = —H {ola’) 2 (a'|o)

12

. / L
ikt — 174572 17452

2 (@]a) = W
ox Ti/4dL/2 2d?

d2

Since we know [*°_zexp(—2?) do = 0, we can just pick out the terms that don’t die.

9 <] h2k2 l‘/2 h2 I/2 thIQ I/Q ,
Al = ve 7 s Sl I vir Rl i v r s Gl

Ly Y~
_ 2 2 _ L/
= _pg vVt SpEVrdt - ooV
Agreeing with (1.7.39b),
h2
2y _ 2,2
(p°) = ¥E + Rk

, a? ,
52 ” o2 o P (zkx’ — 2d2> x’ exp (zkx/ - W) .
exp ik— — |— ik —

(10)
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1.32.b Evaluate the expectation value of p and p? using the momentum-
space wave function (1.7.42)

As a reminder,

, 7 d1/2 (p/ _ hk)de
<p ‘OL> - h1/27'('1/4 exp | — 2h2

Finding the expectation value of (p),

(p) = (alp) p (ple) (11)
* d p' — hk)?d?
= / hri7al P (_(h) ap (12)
—o0
Setting u = p — hk,
> dhk u?d?
dk [mh?
:Tm,/?:hk (14)
The expectation value of (p?),
> d — hk)2d?
<p2> :/ ﬁﬂ1/2p2 exp <_(th)> dp (15)
Setting u = p — hk,
e} du2 u2d2 o] dehZ u2d2
= / 7172 XP <_h2 ) du +/ 173 OXP (— 2 ) du (16)
2
SLEWEIE (17)

2d?
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1.33 Momentum Translation Operator

1.33.a Prove the following:

0
(Pp'|zla) = ey (P'la)

" / [k AV a /
(Blz|a) = [ dp'¢5(p )Zﬁafp,%(p)

where ¢, (p') = (p'|a) and ¢s(p’) = (p’|8) are momentum-space wave functions.
For the first, insert identity

Wlalo) = lalp”) (]a) = (' |2lp’) (p']a) (1)
Using (1.7.28),
=m%@w> 2)

For the second, insert identity twice,
(Blzler) = (BIp") (P |lp’) (P'ler) (3)
* a / /
=/%@ﬁ%@mp (4)
1.33.b What is the physical significance of

exp <sz)
<p [ =
h

where z is the position operator and = is some number with the dimension of momen-
tum? Justify your answer.
This is the momentum translation operator.



	Fundamental Concepts
	Commutation Relations
	Pauli Matrices
	Invariant Determinant
	Bra-Ket Algebra
	Matrix Representation
	Adding Eigenkets
	Operators in Ket Space
	Orthonormality
	Rotation Operators
	Energy Eigenvalues
	Energy Eigenvalues
	Measurement of Spin
	Stern-Gerlach
	Eigenvalues
	Simultaneous Eigenkets
	Simultaneous Eigenkets
	Degenerate Observables
	Uncertainty Relations
	Expectation Value of Spin States
	Uncertainty Relation
	Uncertainty Relation, Particle in a Box
	Uncertainty Principle, Fermi Question
	Simultaneous Eigenkets
	Rotation
	Real Operators
	Spin Transformation Matrix
	Change of Basis
	Linear Momentum Commutation
	Gottfried
	Translation Operator
	Translation Operator
	Gaussian Wave Packet
	Momentum Translation Operator


